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1 INTRODUCTION

A frequent assumption in computational and corpus linguistics as well as theo-
retical linguistics is that words are associated with a fairly small set of meanings,
statically defined in a lexical resource. [Jurafsky and Martin, 2009, Chap. 19 is
a standard textbook reference presenting this kind of view.] This view is chal-
lenged by work in the psychology of language [Clark and Wilkes-Gibbs, 1986;
Garrod and Anderson, 1987; Pickering and Garrod, 2004; Brennan and Clark,
1996; Healey, 1997, among others] where dialogue participants are regarded as
creating meaning on the fly for the purposes of particular dialogues and this view
has been taken up by recent approaches to dialogue semantics [Larsson, 2007b;
Larsson, 2007a; Larsson and Cooper, 2009; Cooper and Larsson, 2009; Ginzburg,
forthcoming]. [Cooper, 2010a] argues that a view of lexical meaning in flux is im-
portant for the lexicon in general, not just for the analysis of dialogue. Here we will
explore the philosophical underpinning of this argument, in particular the kind of
type theory with records (TTR) that we propose [Cooper, 2005a; Cooper, 2005b;
Ginzburg, forthcoming].

The philosophical argument relates to two views of language that create a ten-
sion in the philosophy of language that has essentially remained unresolved since
the middle of the last century. The conflict is represented in the contrast be-
tween early and late Wittgenstein, that is, the view represented in the Tracta-
tus [Wittgenstein, 1922] as opposed to Philosophical Investigations [Wittgenstein,
1953]. We can think of the positivistic view of early Wittgenstein as somewhat re-
lated to the view of natural languages as formal languages expressed by Montague
[Montague, 1974], even though Montague was reacting against the positivistic view
of natural language as imprecise and informal. Montague’s application of formal
language techniques to natural language does, however, give the impression of
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natural languages as being regimented with meanings determined once and for all
by an interpretation. This is a view which is very different from that of the late
Wittgenstein who talked in terms of language games and the creation of public
language for specific purposes. [Cooper and Ranta, 2008] represents a sketch of
an attempt to take something like the late Wittgenstein view without throwing
away the immense advances that were made in twentieth century semantics by the
application of Montague’s techniques. The idea there is that natural languages are
to be seen as toolboxes (resources) that can be used to create limited languages for
use in particular language games in the sense of late Wittgenstein. These limited
special purpose languages may be formal in the sense that Montague had in mind.
We will argue, however, that there is a lot of linguistic interest in trying to dis-
cover not only how natural languages provide these formal languages but also how
agents using the language apply and develop these resources which are constantly
in a state of flux as we use the language. We will argue that our particular kind of
type theory is appropriate for such an analysis whereas the kind of semantics of the
classical model theoretic approach represented by Montague does not provide us
with enough structure to capture the notions of variation in meaning that appear
to be necessary.

When people talk to each other they create new language suitable for discussing
the subject matter they are addressing. Occasionally, people will create entirely
new words to express a new concept that they are trying to convey to their inter-
locutor. More often, though, they will use a previously existing word but with a
modified meaning to match the new concept. In order to analyze this we need an
approach to meaning in terms of structured objects that can be modified. Some-
times innovation is asymmetric in the sense that the speaker uses a word in a way
that is not innovative for her but the hearer either does not know the word at all or
has not previously heard the word associated with the particular meaning intended
by the speaker. The hearer processes and learns the new way of using the word
by modifying the meaning he had previously associated with the word or, if the
word is entirely new to him, possibly by modifying a similar meaning he associates
with a different word. In order to analyze this we need an approach to meaning
which allows a general notion of a similarity measure on meanings. This, like the
modification of meaning associated with the learning of the innovative meaning,
can be achieved by treating meanings in terms of structured objects where we can
see, for example, how many components a pair of structured meanings share.

The classical notion of meaning from model theoretic semantics is that meaning
is a function from possible worlds and contexts to denotations derived from the
domain of the model. We will argue that record types provide us with feature
structure like objects which easily admit similarity measures and structural mod-
ifications because they are structured into fields containing a label and a value.
Similarity measures can be created by comparing fields in two objects and objects
can be modified by adding or deleting fields or changing the value provided for a
particular field.

The general view of language in which our discussion will be cast is that of
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language as action, speech events that can cause changes in the mental states of
dialogue participants during the course of linguistic interaction. This view of lan-
guage, though it might be seen as contrasting with the kind of formal language
view presented by Montague [Montague, 1974] or even the general Chomskyan
tradition, is not new. Apart from Wittgenstein, it has roots, for example, in
speech act theory [Austin, 1962; Searle, 1969]. An early attempt to take an ac-
tion or event-based view of all aspects of compositional semantics is [Barwise and
Perry, 1983]. Two recent works that develop a linguistic view of interaction are
[Ginzburg, forthcoming] and [Linell, 2009], although these two books take very
different approaches and have almost no overlap in the literature they refer to.

A frequent complaint against classical formal semantics is that it has nothing
to say about the details of word meaning. If you have a superficial analysis of
word meaning then it can appear that uses of words in many different situations
have the same meaning. We shall argue that as you examine the details of word
meaning, we see that the situation is much more like that proposed in the late
Wittgenstein, that is, word meaning varies according to the use to which it is put
in a particular communicative situation. In the following sections we will pursue
the example discussed in [Cooper, 2010a] and show in detail how to construct
a type theory to support the analysis we propose, based on a notion of frame
deriving from Frame Semantics [Fillmore, 1982; Fillmore, 1985]. In what follows
many sections are marked with a star. These sections may be omitted on first
reading. By following the unstarred sections the reader will obtain an emended
version of [Cooper, 2010a]. Readers who dip into the starred sections will in
addition get a technical account of what is discussed in the unstarred sections as
well as some more philosophical background. The unstarred sections occur at the
beginning of the main sections. Section 2 is concerned with how we can use TTR
to represent frames in the sense of Fillmore’s frame semantics and developing the
type theory we need to do this. Section 3 is concerned with how such frames could
be exploited in the compositional semantics of verbs. Section 4 shows how this
analysis can be used to solve a classical puzzle from formal semantics: the Partee
puzzle concerning the rising of temperature and price. Section 5 looks more deeply
into the lexical semantics of a single verb rise using Fernando’s string theory of
events. Here we discover that looking more deeply at the lexical meaning of this
verb suggests that meaning varies from situation to situation and that there is
always an option for creating new meaning. In section 6 we place this observation
in the context of the view of coordination that has been developed by Larsson.
Finally in section 7 we draw some conclusions.
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2 FRAMES

2.1 Representing frames in TTR

Frame semantics was introduced in Fillmore’s classic paper [Fillmore, 1982]. We
will use semantic objects which are related to the frames of FrameNet.1 An im-
portant part of our proposal will be that these objects can serve as the arguments
to predicates. We will use record types as defined in TTR ( [Cooper, 2005a;
Cooper, 2005b; Ginzburg, forthcoming]) to characterize our frames. The advan-
tage of records is that they are objects with a structure like attribute value matrices
as used in linguistics. Labels (corresponding to attributes) in records allow us to
access and keep track of parameters defined within semantic objects. This is in
marked contrast to classical model theoretic semantics where semantic objects are
either atoms or unstructured sets and functions.

Consider the frame Ambient temperature defined in the Berkeley FrameNet2

by “The Temperature in a certain environment, determined by Time and Place,
is specified”. Its core frame elements are given in (1).

(1) Attribute The temperature feature of the weather

Degree A modifier expressing the deviation of the Temperature
from the norm

Place The Place where it is a certain Temperature

Temperature A quantity or other characterization of the Tem-
perature of the environment

Time The Time during which an ambient environment has a par-
ticular Temperature

To make things of a manageable size we will not include all the frame elements
in our representation of this frame. (We have also changed the names of the frame
elements to suit our own purposes.) We will say that an ambient temperature
frame is a record of type (2).

(2)


x : Ind
e-time : Time
e-location : Loc
ctemp at in : temp at in(e-time, e-location, x)


We will call this type AmbTemp. It is a set of four fields each consisting of a

label (to the left of the colon) and a type (to the right of the colon). A record of
type AmbTemp will meet the following two conditions:

1http://framenet.icsi.berkeley.edu/
2accessed 25th Oct, 2009
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• it will contain at least fields with the same labels as the type (it may contain
more)

• each field in the record with the same label as a field in the record type will
contain an object of the type in the corresponding field of the record type.
(Any additional fields with different labels to those in the record type may
contain objects of any type.)

Types constructed with predicates such as ‘temp at in’ have a special status
in that they can be dependent. In (2) the type in the field labelled ‘ctemp at in’
depends on what you choose for the other three fields in the frame. Intuitively,
we can think of such types formed with a predicate like ‘temp at in’ as types of
objects which prove a proposition. What objects you take to belong to these types
depends on what kind of theory of the world you have or what kind of application
you want to use your type theory for. Candidates would be events, states or, in
this case, thermometer or sensor readings.

The notions that we need to define in our type theory in order to achieve this
are:

• basic types, such as Ind, Time and Loc

• complex types constructed with predicates

• record types based on basic types and complex types with predicates

We will see below that our construction of record types will in addition require
us to introduce function types and a type Type of types which will lead us to stratify
our type system. We will begin by presenting some philosophical background for
the type theory.

*2.2 Type theory, mathematics and cognition

The philosophical foundation of type theory (as presented, for example, by [Martin-
Löf, 1984]) is normally seen as related to intuitionism and constructive mathemat-
ics. It is, at bottom, a proof-theoretic discipline rather than a model-theoretic one
(despite the fact that model theories have been provided for some type theories).
However, it seems that many of the ideas in type theory that are important for
the analysis of natural language can be adopted into the classical set theoretic
framework familiar to linguists from the classical canon of formal semantics start-
ing from [Montague, 1974]. There is a risk in pushing this line of alienating both
the type theorists (who feel that the philosophical essence of type theory is being
abandoned) and the linguists (who tend to feel that if one is going to move in
the type theory direction then one should probably be doing proof theory rather
than model theory). Ultimately, the line between a proof theoretical approach and
a model-theoretic approach that advocates structured semantic objects can be a
hard one to draw when viewed from the perspective of a theory of natural language
or human cognition. Both approaches are advocating the need for more structured
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objects than are provided by classical model theory, objects whose components can
be manipulated by formal processes which are meant to model agents’ cognitive
processes. In this section we will attempt to present a philosophical view of our
type theory as an important component in a theory of cognition.

The notion of type that we are discussing is more general than the notion of type
found, for example, in Russell’s theory of types as it was adapted to Montague’s
semantics, that is, entities, sets, sets of sets, function from objects of one type to
another, and so on. The kind of types we are discussing here correspond to what
might be called properties in other theories. Types correspond to pretty much any
useful way of classifying things.

While perception and typing are at the core of cognitive processing an important
feature of cognitive systems is the ability to consider alternative typings which have
not be observed. While we perceive a to be of type T1 it is perhaps nevertheless
conceivable that a could have been of type T2. This leads us to construct modal
type systems with alternative assignments of objects to types.

In addition to basic types, cognitive agents perceive the world in terms of states
and events where objects have properties and stand in relations to each other –
what [Barwise and Perry, 1983] called situations. Thus we introduce types which
are constructed from predicates (like ‘hug’) and objects which are arguments to this
predicate like a and b. We will represent such a constructed type as hug(a,b). What
would an object belonging to such a type be? According to the type-theoretic
approach introduced by Martin-Löf it should be an object which constitutes a
proof that a is hugging b. For Martin-Löf, who was considering mathematical
predicates, such proof objects might be numbers with certain properties, ordered
pairs and so on. [Ranta, 1994] points out that for non-mathematical predicates the
objects could be events as conceived by [Davidson, 1980]. Thus hug(a,b) can be
considered to be an event or a situation type. In some versions of situation theory
[Barwise, 1989; Seligman and Moss, 1997], objects (called infons) constructed from
a relation and its arguments was considered to be one kind of situation type. Thus
one view would be that these kinds of types are playing a similar role in type theory
to the role that infons play in situation theory.

These types play a role in the “propositions as types” dictum which comes from
type theory. If hug(a,b) is the type of events where a hugs b then the sentence
“a hugs b” will be true just in case this type is non-empty, that is, just in case
there is an event where a hugs b. The type can function as the theoretical object
corresponding to the informal notion of proposition. It is “true” just in case it is
non-empty.

An important aspect of human cognition is that we seem to be able to treat the
types themselves as if they were objects. This becomes apparent when we consider
attitude predicates like ‘believe’. In classical model theoretic semantics we think
of believe as corresponding to a relation between individuals and propositions.
In our type theory, however, we are subscribing to the “propositions as types”
view. It then follows that the second argument to the predicate ‘believe’ should
be a type. That is, we should be able to construct the type believe(c, hug(a,b))
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corresponding to c believes that a hugs b. We thus create intensional type systems
where types themselves can be treated as objects and belong to types. Care has
to be taken in constructing such systems in order to avoid paradoxes. We use here
a standard technique known as stratification [Turner, 2005]. We start with a basic
type system and then add higher order levels of types. Each higher order includes
the types of the order immediately below as objects. In each of these higher orders
n there will be a type of all types of the order n− 1 but there is no ultimate “type
of all types” – such a type would have to have itself as an object.

We will argue below that it is very important that the complex types we in-
troduce are structured which enables them to be compared and modified. This is
what makes it possible to account for how agents exploit and adapt the resources
they have as they create new language during the course of interaction. It is not
quite enough, however, simply to have objects with components. We also need
a systematic way of accessing these components, a system of labelling which will
provide us with handles for the various pieces. This is where the record types of
TTR come in. There is a large literature on type theories with records in computer
science, for example, [Tasistro, 1997; Betarte, 1998; Betarte and Tasistro, 1998;
Coquand et al., 2004]. Our notion of record type is closely related to those dis-
cussed in this literature, though (like the rest of TTR) couched in rather different
terms. For us a record type is a set of fields where each field is an ordered pair
of a label and a type (or a pair consisting of a dependent type and a sequence of
path names corresponding to what the type is to depend on). A record belonging
to such a type is a set of fields which includes fields with the same labels as those
occurring in the type. Each field in the record with a label matching one in the
type must contain an object belonging to the type of the corresponding field in
the type.

It is an important aspect of human cognition that we not only appear to con-
struct complex cognitive objects out of smaller ones as their components but that
we also have ways of accessing the components and performing operations like sub-
stitutions, deletions and additions. Cognitive processing also appears to depend
on similarity metrics which require us to compare components. Thus labelling
or the provision of handles pointing to the components of complex objects is an
important part of a formal theory of human cognition and in TTR it is the records
and record types which do this work for us.

The importance of labelling has been reflected in the use of features in linguistic
theorizing ranging from the early Prague school [Trubetzkoy, 1939] to modern
feature based grammar [Sag et al., 2003]. It appears in somewhat different form
in the use of discourse referents in the treatment of discourse anaphora in formal
semantics [Kamp and Reyle, 1993]. In [Cooper, 2005b] we argue that record types
can be used both to model the feature structures of feature based grammar and
the discourse representation structures of discourse representation theory. This
is part of a general programme for developing TTR to be a general type theory
which underlies all our linguistic cognitive processing. In fact, what we would like
to see in the future is a single type theory which underlies all of human cognitive
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processing.
In contrast to the statement of TTR in [Cooper, 2005a] we attempt here to

present interacting modules which are not that complex in themselves. Never-
theless, knowing exactly what you have got when you put everything together
is not an entirely trivial matter. It would be nice from a logical point of view
if human cognition presented itself to us in neat separate boxes which we could
study independently. But this is not the case. We are after all involved in the
study of a biological system and there is no reason in principle why our cognitive
anatomy should be any simpler than our physical anatomy with its multiplicity
of objects such as organs, nerves, muscles and arteries and complex dependen-
cies between them, though all built up on the basis of general principles of cell
structure and DNA. Compared with what we know about physical anatomy, TTR
seems quite modest in the number of different kinds of objects it proposes and the
interrelationships between them.

*2.3 Basic types

The simplest type system we will introduce has no complex types. All the types
are atoms (that is they are objects which are not constructed from other objects
in the system) and the of-type relation is determined by a function which assigns
sets of objects to types. We will call this a system of basic types.

A system of basic types is a pair:

TYPEB = 〈Type, A〉

where:

1. Type is a non-empty set

2. A is a function whose domain is Type

3. for any T ∈ Type, A(T ) is a set disjoint from Type

4. for any T ∈ Type, a :TYPEB
T iff a ∈ A(T )

Central to type theory is the notion of judgements that an object a is of a type
T (in symbols a : T ). We see this as being fundamentally related to perception.
When we perceive objects in the world, we perceive them as belonging to a partic-
ular type (or perhaps several types). There is no perception without some kind of
judgement with respect to types of the perceived object. When we say that we do
not know what an object is, this normally means that we do not have a type for
the object which is narrow enough for the purposes at hand. I trip over something
in the dark, exclaiming “What’s that?”, but my painful physical interaction with
it through my big toe tells me at least that it is a physical object, sufficiently
hard and heavy to offer resistance to my toe. The act of perceiving an object is
perceiving it as something. That “something” is a type.
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The notion of type judgements yields a type theory with two domains: one
domain for the objects and another domain for the types to which these objects
belong. Thus we see types as theoretical entities in their own right, not, for
example, as collections of objects. Diagrammatically we can represent this as in
Figure 1 where object a is of type T1.

T1  T2 

a 

Figure 1. System of basic types

*2.4 Complex types

We start by introducing the notion of a predicate signature.
A predicate signature is a triple

〈Pred, ArgIndices, Arity〉

where:

1. Pred is a set (of predicates)

2. ArgIndices is a set (of indices for predicate arguments, normally types)

3. Arity is a function with domain Pred and range included in the set of finite
sequences of members of ArgIndices.

A polymorphic predicate signature is a triple



10 Robin Cooper

〈Pred, ArgIndices, Arity〉
where:

1. Pred is a set (of predicates)

2. ArgIndices is a set (of indices for predicate arguments, normally types)

3. Arity is a function with domain Pred and range included in the powerset of
the set of finite sequences of members of ArgIndices.

A system of complex types is a quadruple:

TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices, Arity〉, 〈A,F 〉〉
where:

1. 〈BType, A〉 is a system of basic types

2. BType⊆Type

3. for any T ∈ Type, if a :〈BType,A〉 T then a :TYPEC
T

4. 〈Pred, ArgIndices, Arity〉 is a (polymorphic) predicate signature

5. If P ∈ Pred, T1 ∈ Type, . . . , Tn ∈ Type, Arity(P )=〈T1, . . . , Tn〉
(〈T1, . . . , Tn〉∈Arity(P )) and a1 :TYPEC

T1, . . . , an :TYPEC
Tn then

P (a1, . . . an) ∈ PType

6. PType⊆Type

7. for any T ∈ PType, F (T ) is a set disjoint from Type

8. for any T ∈ PType, a :TYPEC
T iff a ∈ F (T )

*2.5 Complex types in record types

If we look back at the record type in (2) now we notice that there is something
odd about the type constructed with the predicate temp at in, namely that the
arguments to the predicate appear to be the labels ‘e-time’, ‘e-location’ and ‘x’
rather than objects that might occur under these labels in a record of this type.
It is objects that are appropriate arguments to a predicate not the labels. (2) is
actually a convenient abbreviatory notation for (3).

(3)



x : Ind
e-time : Time
e-location : Loc
ctemp at in : 〈λv1:Time(

λv2:Loc(
λv3:Ind(

temp at in(v1,v2,v3)))),
〈e-time, e-location, x〉〉
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Here what occurs in the ctemp at in-field is a pair whose first member is a func-
tion and whose second member is a list of labels indicating the fields in a record
where the objects which are to be the arguments to the function are to be found.
When applied to these objects the function will return a type constructed from
the predicate and the objects.

For many simple cases such as (2) the abbreviatory notation is adequate and
much easier to read as long as we keep in mind how it is to be interpreted. Care has
to be taken, however, when record types are arguments to predicates. Consider a
putative representation of a type corresponding to a reading of some man appears
to own a donkey where appear is treated as corresponding to a one place predicate
taking a record type as argument:

x : Ind
c1 : man(x)

c3 : appear(

 y : Ind
c2 : donkey(y)
c4 : own(x,y)

)


Technically, this notation is incorrect since ‘x’ occuring within the argument to
‘appear’ picks up a path outside of the record type in which it occurs. The full
and correct notation for this type would be:

x : Ind
c1 : 〈λv man(v), 〈x〉〉

c3 : 〈λu appear(

 y : Ind
c2 : 〈λv donkey(v),〈y〉〉
c4 : 〈λv own(u,v),〈y〉〉

), 〈x〉〉


When labels are unique there is no harm in using the imprecise notation.

The full treatment of types constructed with predicates which depend on the
values introduced in other fields as in these examples requires us to add functions
and function types to our type theory. Furthermore, since the function returns a
type, we will need a type of types since we want to be able to say that the function
takes objects of types Time, Loc and Ind and returns a type, that is an object of
type Type. Once we have done this we will be ready to give an explicit definition
of record types.

*2.6 Function types

A system of complex types TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices,
Arity〉, 〈A,F 〉〉 has function types if

1. for any T1, T2 ∈ Type, (T1 → T2) ∈ Type

2. for any T1, T2 ∈ Type, f :TYPEC
(T1 → T2) iff f is a function whose domain

is {a | a :TYPEC
T1} and whose range is included in {a | a :TYPEC

T2}
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*2.7 The type Type and stratification

An intensional type system is one in which the types themselves become objects
of a type. We introduce a distinguished type Type to which all the members of the
set Type belong. Things are a little more complicated than this, though, since we
want Type itself to be a type and therefore it should belong to the set Type. This
would mean that Type belongs to itself, i.e. Type:Type. Allowing types to belong
to themselves puts us in danger of creating a situation in which Russell’s paradox
arises. If some members of Type belong to themselves then we should be able to
talk of the set of types which do not belong to themselves, {T ∈ Type | T 6 : T}.
Suppose that some model assigns this set to T ′. Then the question arises whether
T ′ belongs to itself and we can show that if T ′ : T ′ then T ′ 6 : T ′ and if T ′ 6 : T ′
then T ′ : T ′.

In order to avoid this problem we will stratify (or ramify) our type system by
introducing types of different orders. A type system of order 0 will be a system of
complex types in the way we have defined it. The set of types, Type1 of a type
system of order 1 based on this system will contain in addition to everything in the
original type system a type, Type1, to which all the types of order 0, members of
the set Type0, belong. In general for all the natural numbers n, Typen+1 will be
a type to which all the types in Typen belong. But there may be more additional
types included in the higher sets of types. Suppose, for example, that we want to
introduce a predicate P expressing a relationship between individuals and types.
(This will be our basic strategy for the treatment of attitude predicates such as
believe and know.) Then Arity(P ) might be 〈Ind ,Typen〉. In systems of any order
less than n, P will not be able to be used to construct a type because clause 4 in
our definition of systems of complex types requires that the types assigned to the
arguments be types in the system. However, in systems of order n or greater the
required type will be present and the predicate will form a type.

This avoids the risk of running into Russell’s paradox but it introduces another
problem which it is best we deal with straight away. We will illustrate the problem
by creating a small example. Suppose that we have a system of complex types
which includes the type Ind (“individuals”) to which the objects a, b and c belong.
Suppose further that we have three predicates run,know and believe and that
Arity(run)=〈Ind〉 and Arity(know)=Arity(believe)=〈Ind ,Type1〉. The set Type0

will contain the types run(a), run(b) and run(c) but no types constructed with
know and believe. The set Type1 will contain types such as believe(a, run(a)) and
know(c, run(b)) in addition, since run(a), run(b) and run(c), being members of
Type0 will belong to the type Type1. The set Type2 will not get any additional
types constructed with predicates since the arity of the predicates restricts the
second argument to be of Type1. But suppose we want to express that a believes
that b knows that c runs, that is we want to construct the type believe(a, know(b,
run(c))). Perhaps we could solve this by saying that the arity of know and believe
is 〈Ind ,Type2〉. But now Type1 will not contain any types constructed with these
predicates and Type2 will again only contain types such as know(c, run(b)).
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In order to solve this problem we need to introduce a limited amount of poly-
morphism into our arities and assign these predicates the arity 〈Ind ,Typen〉n>0

(that is, the set of sequences 〈Ind ,Typen〉 where n is a natural number greater
than 0). Predicates with this arity will be able to take arguments of any type
Typen where n > 0. We will say that the predicates know and believe have this
arity. Now it will be the case that run(c):Type1, know(b, run(c)):Type2, believe(a,
know(b, run(c))):Type3 and so on.

An intensional system of complex types is a family of quadruples indexed by
the natural numbers:

TYPEIC = 〈Typen, BType, 〈PTypen, Pred, ArgIndices, Arity〉,
〈A,Fn〉〉n∈Nat

where (using TYPEICn to refer to the quadruple indexed by n):

1. for each n,〈Typen, BType, 〈PTypen, Pred, ArgIndices, Arity〉, 〈A,Fn〉〉
is a system of complex types

2. for each n, Typen ⊆ Typen+1 and PTypen ⊆ PTypen+1

3. for each n, if T ∈ PTypen and p ∈ Fn(T ) then p ∈ Fn+1(T )

4. for each n > 0, Typen ∈ Typen

5. for each n > 0, T :TYPEICn
Typen iff T ∈ Typen−1

We can represent a stratified intensional system of types diagrammatically as
Figure 2 where we represent just the first three levels of an infinite stratification.

An intensional system of complex types TYPEIC ,

TYPEIC = 〈Typen, BType, 〈PTypen, Pred, ArgIndices, Arity〉,
〈A,Fn〉〉n∈Nat

has dependent function types if

1. for any n > 0, T ∈ Typen and F :TYPEICn
(T → Typen), ((a : T ) →

F(a)) ∈ Typen

2. for each n > 0, f :TYPEICn
((a : T ) → F(a)) iff f is a function whose

domain is {a | a :TYPEICn
T} and such that for any a in the domain of f ,

f(a) :TYPEICn
F(a).

We might say that on this view dependent function types are “semi-intensional”
in that they depend on there being a type of types for their definition but they do
not introduce types as arguments to predicates and do not involve the definition
of orders of types in terms of the types of the next lower order.
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T1  T2 

a 

T1  T2 

T3 

Type1 

T1  T2 

T3 

Type1 

Type2 

Figure 2. Intensional system of types with stratification

*2.8 Record types

In this section we will define what it means for a system of complex types to have
record types. The objects of record types, that is, records, are themselves struc-
tured mathematical objects of a particular kind and we will start by characterizing
them.

A record is a finite set of ordered pairs (called fields) which is the graph of a
function. If r is a record and 〈`, v〉 is a field in r we call ` a label and v a value in
r and we use r.` to denote v. r.` is called a path in r.

We will use a tabular format to represent records. A record {〈`1, v1〉, . . . , 〈`n, vn〉}
is displayed as  `1 = v1

. . .
`n = vn


A value may itself be a record and paths may extend into embedded records. A
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record which contains records as values is called a complex record and otherwise a
record is simple. Values which are not records are called leaves. Consider a record
r 

f =

 f =
[

ff = a
gg = b

]
g = c


g =

[
h =

[
g = a
h = d

] ]


Among the paths in r are r.f , r.g.h and r.f.f.ff which denote, respectively, f =
[

ff = a
gg = b

]
g = c


[
g = a
h = d

]
and a. We will make a distinction between absolute paths, such as those we have
already mentioned, which consist of a record followed by a series of labels connected
by dots and relative paths which are just a series of labels connected by dots, e.g.
g.h. Relative paths are useful when we wish to refer to similar paths in different
records. We will use path to refer to either absolute or relative paths when it is
clear from the context which is meant. The set of leaves of r, also known as its
extension (those objects other than labels which it contains), is {a, b, c, d}. The
bag (or multiset) of leaves of r, also known as its multiset extension, is {a, a, b, c, d}.
A record may be regarded as a way of labelling and structuring its extension. Two
records are (multiset) extensionally equivalent if they have the same (multiset)
extension. Two important, though trivial, facts about records are:

Flattening. For any record r, there is a multiset extensionally equiva-
lent simple record. We can define an operation of flattening on records
which will always produce an equivalent simple record. In the case of
our example, the result of flattening is

f.f.ff = a
f.f.gg = b
f.g = c
g.h.g = a
g.h.h = d


assuming the flattening operation uses paths from the original record
in a rather obvious way to create unique labels for the new record.

Relabelling. For any record r, if π1.`.π2 is a path π in r, and π1.`
′.π2

′ is
not a path in r (for any π2

′), then substituting `′ for the occurrence of
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` in π results in a record which is multiset equivalent to r. We could,
for example, substitute k for the second occurrence of g in the path
g.h.g in our example record.
f =

 f =
[

ff = a
gg = b

]
g = c


g =

[
h =

[
k = a
h = d

] ]


A record type is a record in the general sense defined above where the values in
its fields are types or, in some cases, certain kinds of mathematical objects which
can be used to construct types.

A record r is well-typed with respect to a system of types TYPE with set of
types Type and a set of labels L iff for each field 〈`, a〉 ∈ r, ` ∈ L and either
a :TYPE T for some T ∈ Type or a is itself a record which is well-typed with
respect to TYPE and L.

A system of complex types TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices,
Arity〉, 〈A,F 〉〉 has record types based on 〈L,RType〉, where L is a countably in-
finite set (of labels) and RType ⊆ Type, where RType is defined by:

1. Rec ∈ RType

2. r :TYPEC
Rec iff r is a well-typed record with respect to TYPEC and L.

3. if ` ∈ L and T ∈ Type, then {〈`, T 〉} ∈ RType.

4. r :TYPEC
{〈`, T 〉} iff r :TYPEC

Rec, 〈`, a〉 ∈ r and a :TYPEC
T .

5. if R ∈ RType, ` ∈ L, ` does not occur as a label in R (i.e. there is no field
〈`′, T ′〉 in R such that `′ = `), then R ∪ {〈`, T 〉} ∈ RType.

6. r :TYPEC
R ∪ {〈`, T 〉} iff r :TYPEC

R, 〈`, a〉 ∈ r and a :TYPEC
T .

This gives us non-dependent record types in a system of complex types. We
can extend this to intensional systems of complex types (with stratification).

An intensional system of complex types TYPEIC = 〈Typen, BType, 〈PTypen,
Pred, ArgIndices, Arity〉, 〈A,Fn〉〉n∈Nat has record types based on 〈L,RTypen〉n∈Nat

if for each n, 〈Typen, BType, 〈PTypen, Pred, ArgIndices, Arity〉, 〈A,Fn〉〉
has record types based on 〈L,RTypen〉 and

1. for each n, RTypen ⊆ RTypen+1

2. for each n > 0, RecTypen ∈ RTypen

3. for each n > 0, T :TYPEICn
RecTypen iff T ∈ RTypen−1
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Intensional type systems may in addition contain dependent record types.
An intensional system of complex types TYPEIC = 〈Typen, BType, 〈PTypen,

Pred, ArgIndices, Arity〉, 〈A,Fn〉〉n∈Nat has dependent record types based on
〈L,RTypen〉n∈Nat , if it has records types based on 〈L,RTypen〉n∈Nat and for
each n > 0

1. ifR is a member of RTypen, ` ∈ L not occurring as a label inR, T1, . . . , Tm ∈
Typen, R.π1, . . . , R.πm are paths in R and F is a function of type ((a1 :
T1) → . . . → ((am : Tm) → Typen) . . .), then R ∪ {〈`, 〈F , 〈π1, . . . , πm〉〉〉} ∈
RTypen.

2. r :TYPEICn
R∪{〈`, 〈F , 〈π1, . . . , πm〉〉〉} iff r :TYPEICn

R, 〈`, a〉 is a field in r,
r.π1 :TYPEICn

T1, . . . , r.πm :TYPEICn
Tm and a :TYPEICn

F(r.π1, . . . , r.πm).

We represent a record type {〈`1, T1〉, . . . , 〈`n, Tn〉} graphically as `1 : T1

. . .
`n : Tn


In the case of dependent record types we sometimes use a convenient notation

representing e.g.

〈λuλv love(u, v), 〈π1, π2〉〉

as

love(π1, π2)

Our systems now allow both function types and dependent record types and
allow dependent record types to be arguments to functions. We have to be careful
when considering what the result of applying a function to a dependent record
type should be. Consider the following simple example:

λv0 :RecType(
[
c0:v0

]
)

What should be the result of applying this function to the record type[
x : Ind
c1 : 〈λv1 :Ind(dog(v1)), 〈x〉〉

]
Given normal assumptions about function application the result would be[

c0 :
[

x : Ind
c1 : 〈λv1 :Ind(dog(v1)), 〈x〉〉

] ]
but this would be incorrect. In fact it is not a well-formed record type since x is
not a path in it. Instead the result should be[

c0 :
[

x : Ind
c1 : 〈λv1 :Ind(dog(v1)), 〈c0.x〉〉

] ]
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where the path from the top of the record type is specified. Note that this adjust-
ment is only required when a record type is being substituted into a position that
lies on a path within a resulting record type. It will not, for example, apply in a
case where a record type is to be substituted for an argument to a predicate such
as when applying the function

λv0 :RecType(
[
c0:appear(v0)

]
)

to  x : Ind
c1 : 〈λv :Ind(dog(v)), 〈x〉〉
c2 : 〈λv :Ind(approach(v)), 〈x〉〉


where the position of v0 is in an “intensional context”, that is, as the argument to
a predicate and there is no path to this position in the record type resulting from
applying the function. Here the result of the application is c0 : appear(

 x : Ind
c1 : 〈λv :Ind(dog(v)), 〈x〉〉
c2 : 〈λv :Ind(approach(v)), 〈x〉〉

 )


with no adjustment necessary to the paths representing the dependencies.3 (Note
that ‘c0.x’ is not a path in this record type.)

These matters arise as a result of our choice of using paths to represent depen-
dencies in record types (rather than, for example, introducing additional unique
identifiers to keep track of the positions within a record type as has been sug-
gested by Thierry Coquand). It seems like a matter of implementation rather
than a matter of substance and it is straightforward to define a path-aware notion
of substitution which can be used in the definition of what it means to apply a
TTR function to an argument. If f is a function represented by λv : T (φ) and α
is the representation of an object of type T , then the result of applying f to α,
f(α), is represented by Subst(α,v,φ,∅), that is, the result of substituting α for v
in φ with respect to the empty path where for arbitrary α, v, φ, π, Subst(α,v,φ,π)
is defined as

1. extend-paths(α,π), if φ is v

2. φ, if φ is of the form λv : T (ζ), for some T and ζ (i.e. don’t do any substi-
tution if v is bound within φ)

3. λu : T (Subst(α,v,ζ,π)), if φ is of the form λu : T (ζ) and u is not v.

4.

 `1 : Subst(α,v,T1,π.`1)
. . .
`n : Subst(α,v,Tn,π.`n)

, if φ is

 `1 : T1

. . .
`n : Tn


3This record corresponds to the interpretation of it appears that a dog is approaching.
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5. P (Subst(α,v,β1,π),. . . ,Subst(α,v,βn,π)), if α is P (β1, . . . , βn) for some pred-
icate P

6. φ otherwise

extend-paths(α,π) is

1. 〈f, 〈π.π1, . . . , π.πn〉〉, if α is 〈f, 〈π1, . . . , πn〉〉

2.

 `1 : extend-paths(T1, π)
. . .
`n : extend-paths(Tn, π)

 if α is

 `1 : T1

. . .
`n : Tn


3. P (extend-paths(β1, π),. . . ,extend-paths(βn, π)), if α is P (β1, . . . , βn) for some

predicate P

4. α, otherwise

3 FRAMES IN THE COMPOSITIONAL SEMANTICS OF VERBS

3.1 Verbs as functions from frames to frame types

Consider an intransitive verb such as run. Basically, this corresponds to a predicate
of individuals. Thus (4) would represent the type of events or situations where the
individual Sam (‘sam’) runs.

(4) run(sam)

On FrameNet4 run on one of its readings is associated with the frame Self motion.
Like many other frames in FrameNet this has a frame element Time which in this
frame is explained in this case as “The time when the motion occurs”. This is
what Reichenbach [Reichenbach, 1947] called more generally event time and we
will use the label ‘e-time’. We will add an additional argument for a time to the
predicate and create a frame-type (5).5

(5)
[

e-time : TimeInt
crun : run(sam,e-time)

]
For the type (5) to be non-empty it is required that there be some time interval at
which Sam runs. We use TimeInt as an abbreviation for the type of time intervals,
(6).

4accessed 1st April, 2010
5Of course, we are ignoring many other frame elements which occur in FrameNet’s Self motion

which could be added to obtain a more detailed semantic analysis.
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(6)

 start : Time
end : Time
c : start<end


In (5) there are no constraints on the time interval apart from the requirement
that Sam runs at that time. A record will be of this type just in case in provides
some time interval at which Sam runs with the appropriate labels. Thus this frame
type corresponds to a “tenseless proposition”, something that is not available in
the Priorean setup [Prior, 1957; Prior, 1967] that Montague employs where logical
formulae without a tense operator correspond to a present tense interpretation. In
order to be able to add tense to this we need to relate the event time to another
time interval, normally the time which Reichenbach calls the speech time.6 A past
tense type anchored to a time interval ι is represented in (7).

(7)
[

e-time : TimeInt
ctns : e-time.end< ι.start

]
This requires that the end of the event time interval has to precede the start of
the speech time interval. In order for a past-tense sentence Sam ran to be true
we would need to find an object of both types (5) and (7). This is equivalent to
requiring that there is an object in the result of merging the two types given in
(8). (We make the notion of merge precise in section *3.2.)

(8)

 e-time : TimeInt
ctns : e-time.end< ι.start
crun : run(sam,e-time)


Suppose that we have an utterance u, that is, a speech event of type (9).

(9)

 phon : “sam”_“ran”
s-time : TimeInt
cutt : uttered(phon,s-time)


where “sam”_“ran” is the type of strings of an utterance of Sam concatenated
with an utterance of ran. (See section *3.4 for a discussion of string types.) Then
we can say that the speech time interval ι in (8) is u.s-time. That is, the past
tense constraint requires that the event happened before the start of the speech
event.

(8) is a type which is the content of an utterance of the sentence Sam ran. In
order to obtain the content of the verb ran we need to create a function which
abstracts over the first argument of the predicate. Because frames will play an

6Uses of historic present tense provide examples where the tense is anchored to a time other
than the speech time.
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important role as arguments to predicates below we will not abstract over individ-
uals but rather over frames containing individuals. The content of the verb ran
will be (10).

(10) λr:
[
x:Ind

]
(

 e-time : TimeInt
ctns : e-time.end< ι.start
crun : run(r.x,e-time)

)

We show how this content can be utilized in a toy grammar in section *3.5.

*3.2 Meets and merges

A system of complex types TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices,
Arity〉, 〈A,F 〉〉 has meet types if

1. for any T1, T2 ∈ Type, (T1 ∧ T2) ∈ Type

2. for any T1, T2 ∈ Type, a :TYPEC
(T1∧T2) iff a :TYPEC

T1 and a :TYPEC
T2

This definition does not make precise exactly which mathematical object is
denoted by T1 ∧ T2. Our intention is that it denote an object which contains the
symbol ‘∧’ as a component, for example, the triple 〈∧, T1, T2〉. Note that if T1 and
T2 are record types as defined in section *2.8, then T1 ∧ T2 will not be a record
type in the sense of this definition, since it is not a set of fields as required by the
definition. This is true despite the fact that anything which is of the type T1 ∧ T2

where T1 and T2 are record types will be a record. There will, however, be a record
type which is equivalent to the meet type.

There is a range of notions of equivalence which are available for types. For
present purposes we will use a notion we call necessary equivalence which says that
two types T1 and T2 are necessarily equivalent just in case a : T1 iff a : T2 on any
assigment to basic types, A, and assignment to types constructed from a predicate
and its arguments, F . This relates to the definition of a system of complex types
in section *2.4, that is a system TYPEC = 〈Type, BType, 〈PType, Pred,
ArgIndices, Arity〉, 〈A,F 〉〉. The idea is that a notion of equivalence related to a
single system of complex types TYPEC that would say that T1 is equivalent to T2

just in case a :TYPEC
T1 iff a :TYPEC

T2 would be a weaker notion of “material
equivalence”. Necessary equivalence is a stronger notion that requires that T1 and
T2 have the same extension no matter which functions A and F are chosen. We
make this precise by introducing modal systems of complex types (section *3.3).

If T1 and T2 are record types then there will always be a record type (not a
meet) T3 which is necessarily equivalent to T1∧T2. Let us consider some examples:[

f:T1

]
∧
[
g:T2

]
≈
[
f:T1

g:T2

]
[
f:T1

]
∧
[
f:T2

]
≈
[
f:T1 ∧ T2

]
Below is a more logically oriented definition of the simplification of meets of record
types than that given in [Cooper, 2008]. We define a function µ which maps meets



22 Robin Cooper

of record types to an equivalent record type, record types to equivalent types where
meets in their values have been simplified by µ and any other types to themselves:

1. If for some T1, T2, T = T1 ∧ T2 then µ(T ) = µ′(µ(T1) ∧ µ(T2)).

2. If T is a record type then µ(T ) is T ′ such that for any `,v, 〈`, µ(v)〉 ∈ T ′ iff
〈`, v〉 ∈ T .

3. Otherwise µ(T ) = T .

µ′(T1 ∧ T2) is defined by:

1. if T1 and T2 are record types, then µ′(T1 ∧ T2) = T3 such that

(a) for any `, v1, v2, if 〈`, v1〉 ∈ T1 and 〈`, v2〉 ∈ T2, then

i. if v1 and v2 are 〈λu1 : T ′1 . . . λui : T ′i (φ), 〈π1 . . . πi〉〉 and 〈λu′1 :
T ′′1 . . . λu

′
k : T ′′k (ψ), 〈π′1 . . . π′k〉〉 respectively, then 〈λu1 : T ′1 . . . λui :

T ′i , λu
′
1 : T ′′1 . . . λu

′
k : T ′′k (µ(φ ∧ ψ)), 〈π1 . . . πi, π

′
1 . . . π

′
k〉〉 ∈ T3

ii. if v1 is 〈λu1 : T ′1 . . . λui : T ′i (φ), 〈π1 . . . πi〉〉 and v2 is a type (i.e. not
of the form 〈f,Π〉 for some function f and sequence of paths Π),
then 〈λu1 : T ′1 . . . λui : T ′i (µ(φ ∧ v2)), 〈π1 . . . πi〉〉 ∈ T3

iii. if v2 is 〈λu′1 : T ′′1 . . . λu
′
k : T ′′k (ψ), 〈π′1 . . . π′k〉〉 and v1 is a type, then

〈λu′1 : T ′′1 . . . λu
′
k : T ′′k (µ(v1 ∧ ψ)), 〈π′1 . . . π′k〉〉 ∈ T3

iv. otherwise 〈`, µ(v1 ∧ v2)〉 ∈ T3

(b) for any `, v1, if 〈`, v1〉 ∈ T1 and there is no v2 such that 〈`, v2〉 ∈ T2,
then 〈`, v1〉 ∈ T3

(c) for any `, v2, if 〈`, v2〉 ∈ T2 and there is no v1 such that 〈`, v1〉 ∈ T1,
then 〈`, v2〉 ∈ T3

2. Otherwise µ′(T1 ∧ T2) = T1 ∧ T2

T1 ∧. T2 is used to represent µ(T1 ∧ T2).
This definition of µ differs from that given in [Cooper, 2008] in three respects.

Firstly, it is not written in pseudocode and is therefore a better mathematical ab-
straction from the algorithm that has been implemented. Secondly, it includes the
details of the treatment of dependencies within record types which were omitted
from the previous definition. Finally, it excludes reference to a notion of subtype
(‘v’) which was included in the previous definition. This could be changed by
adding the following clauses at the beginning of the definition of µ (after provid-
ing a characterization of the subtype relation, v).

1. if for some T1, T2, T = T1 ∧ T2 and T1 v T2 then µ(T ) = T1

2. if for some T1, T2, T = T1 ∧ T2 and T2 v T1 then µ(T ) = T2
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The current first clause would then hold in case neither of the conditions of
these two clauses are met. The definition without these additional clauses only
accounts for simplification of meets which have to do with merges of record types
whereas the definition with the additional clauses would in addition have the effect,
for example, that µ(T ∧ Ta) = Ta and µ(T1 ∧ (T1 ∨ T2)) = T1 (provided that we
have an appropriate definition of v) whereas the current definition without the
additional clauses means that µ leaves these types unchanged.

*3.3 Models and modal systems of types

Consider the definition of a system of complex types TYPEC = 〈Type, BType,
〈PType, Pred, ArgIndices, Arity〉, 〈A,F 〉〉 in section *2.4. We call the pair
〈A,F 〉 a model because of its similarity to first order models. A model for classical
first order logic provides a domain A in which the logic is to be interpreted and an
assignment F of values based on A to constants and predicates. That is: for any
constant c, F (c) ∈ A; for a 1-place predicate P , F (P ) ⊆ A; for a 2-place predicate
R, F (R) ⊆ A × A and so on. Classical first order logic is not sorted, that is, A
is just a simple set of objects in the domain. Sorted first order logic provides a
family of sets of different sorts. We can think of A as a function which provides
for each sort the objects which are of that sort. Predicates are then associated
with an arity which tells us to which sort the arguments of the predicate should
belong. Our models are similar to these models for sorted first order logic with
our basic types corresponding to the sorts. Models of first order logic provide a
way of making arbitrary connections between the basic expressions of the logic
and another domain. Intuitively, we can think of the domain as being a part of
the “real world” consisting of objects like people and tables, particularly if we are
interested in natural language semantics. But domains can also be mathematical
objects like numbers or sets. The exact nature of the objects in the domain in first
order models is not of concern to the logician. It could, for example, be defined
as a collection of sensor readings which are available to a particular robot. The
model provides an interface between the logical expressions and some domain of
our choosing. In a similar way the models in our type theory provide an interface
between the type theory and a system external to the type theory of our choosing:
the “real world”, robot sensations or whatever.

The F of our models behaves a little differently from that in first order models
in that it assigns objects to types constructed from predicates rather than the
predicates themselves. Suppose we have a type P (a) constructed from a predicate
P and an object a which is of an appropriate basic type as required by the arity
of P . We could have made our models even closer to those of first order logic
by having F assign sets to predicates in the same way as in first order logic. We
could mimic truth-values by introducing a distinguished basic type Truth such
that A(Truth) = {true}. We could then have said that true : P (a) iff a ∈ F (P )
and no other object b is such that b : P (a). From the perspective of type theory,
however, this seems like an odd thing to do, in part because the object true seems
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like an odd thing to have to include in your domain, being an artifical object
which has to belong to so many different types and in part because it is missing
a fundamental type theoretical intuition that something of type P (a) is whatever
it is that counts as a proof object for the fact that a falls under the predicate P .
So instead of having F assign a value to the predicate P we have it assign a value
to the type P (a). The exact nature of the object which is obtained by applying F
to P (a) depends on what kind of model you are working with. A basic intuition
corresponding to the idea that models represent the “real world” is that it is a
situation (i.e. a “bit of the real world”) which shows that a falls under predicate
P . But we could also define models in terms of robot sensations, four-dimensional
space coordinates, databases, urls or whatever takes our fancy. The model is the
place where we can connect our type theoretical system to some system external
to the type theory. By moving from truth-values to this richer world of proof
objects we have not lost the notion of truth. The “true” types are just those that
are assigned a non-empty set of objects.

There is another important way in which our models are different from classical
first order models. In first order logic the model relates two entirely separate
domains: the syntactic expressions of first order logic and the model theoretic
domain in which it is interpreted. The syntax of the logic is defined independently
of the model. What counts as a well-formed expression does not depend in any
way on what particular model we are using. This is not true of the models we
have used in our type theoretical systems. Suppose that we have a predicate P
with arity 〈T1〉. Suppose furthermore that our model is such that A(T1) = {a}
and A(T2) = {b}. Then it will be the case that P (a) is a type, but not P (b). If we
had chosen a different model the set of types might have been different. This fact
alone might lead some people to conclude that it is confusing and misleading to
call 〈A,F 〉 a model in our type systems and certainly there is much of value in this
point of view. The term ‘model’ is firmly entrenched in logic as that which provides
the arbitrary parts of the interpretation of an independently defined syntactic
language. However, we have chosen to persist in using the term here to emphasize
the correspondence to models in logic and necessity of introducing an arbitrary
link between a type theoretical system and an “external world” of some kind. The
intuitive connection to models in logic is reinforced by our use of models in the
discussion of modal systems below.

A modal system of complex types provides a collection of models, M, so that
we can talk about properties of the whole collection of type assignments provided
by the various models M ∈M.

A modal system of complex types based on M is a family of quadruples:

TYPEMC = 〈Type, BType, 〈PType, Pred, ArgIndices, Arity〉,M〉M∈M

where for each M ∈ M, 〈Type, BType, 〈PType, Pred, ArgIndices, Ar-
ity〉,M〉 is a system of complex types.

This enables us to define modal notions:
If TYPEMC = 〈Type, BType, 〈PType, Pred, ArgIndices, Arity〉,M〉M∈M
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is a modal system of complex types based on M, we shall use the notation
TYPEMCM

(whereM ∈M) to refer to that system of complex types in TYPEMC

whose model is M . Then:

1. for any T1, T2 ∈ Type, T1 is (necessarily) equivalent to T2 in TYPEMC ,
T1 ≈TYPEMC

T2, iff for allM ∈M, {a | a :TYPEMCM
T1} = {a | a :TYPEMCM

T2}

2. for any T1, T2 ∈ Type, T1 is a subtype of T2 in TYPEMC , T1 vTYPEMC T2,
iff for all M ∈M, {a | a :TYPEMCM

T1} ⊆ {a | a :TYPEMCM
T2}

3. for any T ∈ Type, T is necessary in TYPEMC iff for all M ∈M,
{a | a :TYPEMCM

T} 6= ∅

4. for any T ∈ Type, T is possible in TYPEMC iff for some M ∈M,
{a | a :TYPEMCM

T} 6= ∅

*3.4 Strings and regular types

A string algebra over a set of objects O is a pair 〈S,_ 〉 where:

1. S is the closure of O∪{e} (e is the empty string) under the binary operation
‘_’ (“concatenation”)

2. for any s in S, e_s = s_e = s

3. for any s1, s2, s3 in S, (s_1 s2)_s3 = s_1 (s_2 s3). For this reason we normally
write s_1 s

_
2 s3 or more simply s1s2s3.

The objects in S are called strings. Strings have length. e has length 0, any
object in O has length 1. If s is a string in S with length n and a is an object in
O then s_a has length n+ 1. We use s[n] to represent the nth element of string
s.

We can define types whose elements are strings. Such types correspond to
regular expressions and we will call them regular types. Here we will define just
two kinds of such types: concatenation types and Kleene-+ types.

A system of complex types TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices,
Arity〉, 〈A,F 〉〉 has concatenation types if

1. for any T1, T2 ∈ Type, T1
_T2 ∈ Type

2. a : T1
_T2 iff a = x_y, x : T1 and y : T2

TYPEC has Kleene-+ types if

1. for any T ∈ Type, T+ ∈ Type

2. a : T+ iff a = x_1 . . .
_xn, n > 0 and for i, 1 ≤ i ≤ n, xi : T
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Strings are used standardly in formal language theory where strings of symbols
or strings of words are normally considered. Following important insights by Tim
Fernando [Fernando, 2004; Fernando, 2006; Fernando, 2008; Fernando, 2009] we
shall be concerned rather with strings of events. (We shall return to this in sec-
tion 5.) We use informal notations like ‘ “sam” ’ and ‘ “ran” ’ to represent phono-
logical types of speech events (utterances of Sam and ran). Thus ‘ “sam”_“ran” ’
is the type of speech events which are concatenations of an utterance of Sam and
an utterance of ran.

*3.5 Grammar and compositional semantics

In order to illustrate how the content we have given for ran in section 3.1 figures
in a grammar and compositional semantics we shall define a toy grammar which
covers the sentence Sam ran.

We will present our grammar in terms of signs (in a similar sense to HPSG, see,
for example, [Sag et al., 2003]). Our signs will be records of type Sign which for
present purposes we will take to be the type: s-event : SEvent

synsem :
[

cat : Cat
cnt : Cnt

] 
We shall spell out the nature of the types SEvent, Cat and Cnt below. A sign has
two main components, one corresponding to the physical nature of the speech event
(‘s-event’) and the other to its interpretation (syntax and semantics, ‘synsem’,
using the label which is well-established in HPSG).

SEvent is the type
phon : Phon

s-time :
[

start : Time
end : Time

]
uttat : 〈λv1 :Str(λv2 :Time(λv3 :Time(uttered at(v1,v2,v3)))),

〈s-event.phon, s-event.s-time.start, s-event.s-time.end〉〉


In the s-event component the phon-field represents the phonology of an expres-

sion. Here we will take phonology as a string of word utterances although in a
complete treatment of spoken language we would need phonological and phonetic
attributes. That is we take Phon to be Wrd+ where Wrd (the type of word ut-
terances) is defined in the lexicon. The s-time (“speech time”) field represents the
starting and ending time for the utterance. We assume the existence of a predicate
‘uttered at’ with arity 〈Phon,Time,Time〉. An object of type ‘uttered at(a,t1,t2)’
could be an event where a is uttered beginning at t1 and ending at t2 or a corre-
sponding hypothesis produced by a speech recognizer with time-stamps, depending
on the application of the theory. In a more complete treatment we would need
additional information about the physical nature of the speech event, such as the
identity of the speaker and where it took place.
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In the synsem component the cat-field introduces a category for the phrase. For
present purposes we will require that the following hold of the type Cat :

s, np, vp, nprop, vi : Cat

The objects of type Cat (s, np, vp etc.) are regarded as convenient abstract objects
which are used to categorize classes of speech events.

The cnt-field represents the content or interpretation of the utterance. Since the
content types become rather long we will introduce abbreviations to make them
readable:

Ppty, “property” is to be
[
x:Ind

]
→RecType

Quant, “quantifier” is to be Ppty→RecType

We only use a small finite number of function types for content types and thus we
are able to define the type Cnt for present purposes as

RecType∨(Ppty∨Quant)

This makes use of join types which are defined in a similar way to meet types:
TYPEC = 〈Type, BType, 〈PType, Pred, ArgIndices, Arity〉, 〈A,F 〉〉 has
join types if

1. for any T1, T2 ∈ Type, (T1 ∨ T2) ∈ Type

2. for any T1, T2 ∈ Type, a :TYPEC
(T1 ∨ T2) iff a :TYPEC

T1 or a :TYPEC
T2

We will present first the lexicon and then rules for combining phrases.

Lexicon

We will define lexical functions which tell us how to construct a type for a lexical
item on the basis of a phonological type and either an object or a type correspond-
ing to an observation of the world. The idea is that an agent which is constructing
a grammar for use in a particular communicative situation will construct lexical
types on the basis of a coordinated pair of observations: an observation of a speech
event and an observation of an object or event with which the speech event is as-
sociated. This is related to the idea from situation semantics that meaning is a
relation between an utterance situation and a described situation [Barwise and
Perry, 1983]. The use of types here relates to the idea of type judgements as being
involved in perception as discussed in section *2.3.

We shall use the following notation:

If W is a phonological type, then cW is a distinguished label associated
with W , such that if W1 6= W2 then cW1 6=cW2 .

We shall also make use of singleton types. TYPEC = 〈Type, BType, 〈PType,
Pred, ArgIndices, Arity〉, 〈A,F 〉〉 has singleton types if
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1. for any T ∈ Type and b :TYPEC
T , Tb ∈ Type

2. for any T ∈ Type, a :TYPEC
Tb iff a :TYPEC

T and a = b

In the case of a singleton type Tx we allow a variant notation in records (corre-
sponding to the manifest fields of Coquand et al., 2004) using[

`=x : T
]

for [
` : Tx

]
When we have a field[

` : 〈λv1 : T1 . . . λvn : Tn(Tx), 〈π1 . . . πn〉〉
]

we allow for convenience notations such as[
`=〈λv1 : T1 . . . λvn : Tn{x}, 〈π1 . . . πn〉〉 : T

][
`=x : 〈λv1 : T1 . . . λvn : Tn(T ), 〈π1 . . . πn〉〉

]
or [

`=〈λv1 : T1 . . . λvn : Tn{x}, 〈π1 . . . πn〉〉:〈λv1 : T1 . . . λvn : Tn(T ), 〈π1 . . . πn〉〉
]

depending on how Tx depends on π1 . . . πn. We use { and } to delimit x since
x itself may be a function thus leading to ambiguity in the notation if we do
not distinguish which λ’s represent dependency and which belong to the resulting
object. Note that this ambiguity only arises in the notation we are adopting for
convenience.

Proper names

The most straightforward view of proper names is that they are based on pairings
of proper noun utterances and individuals. While the full story about proper
names may have to be more complex, this will suffice for our present purposes.

We define a function lexnProp which maps phonological types corresponding to
proper names like Sam and individuals to record types, such that if W is a phono-
logical type such as “Sam” or “John” and a:Ind, lexnProp(W,a) is

Sign ∧. s-event :
[

phon : W
]

synsem :
[

cat=nProp : Cat
cnt=λv:Ppty(v(

[
x=a

]
)) : Quant

] 
The idea of this function is that an agent could have it as a resource to construct
a lexical item for a local language on observing a pairing of a particular type of
utterance (e.g. utterances of Sam) and a particular individual. If the language we
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are building is small enough there will be only one individual associated with a
given phonological type such as “sam” but it is easy to imagine situations where
there will be a need to have different individuals associated with the same name
even within a local language, for example, if you need to talk about two people
named Sam who write a book together. While this creates potential for misun-
derstanding there is nothing technically mysterious about having two lexical types
which happen to share the same phonology. This is in contrast to the classical for-
mal semantics view of proper names as related to logical constants where it seems
unexpected that proper nouns should be able to refer to different individuals on
different uses.

An example of a set of basic proper names which could be generated with these
resources given two individuals a and b (that is, a, b:Ind) would be

{lexnProp(“Sam”,a),
lexnProp(“John”,b)}

Intransitive verbs

For intransitive verbs we will take the paired observations to involve a phonolog-
ical type corresponding to an intransitive verb on the one hand and a predicate
on the other. Philosophically, it may appear harder to explain what it means to
observe a predicate compared to observing an individual, even though if you dig
deep enough even individuals are problematical. However, it seems that any rea-
sonable theory of perception should account for the fact that we perceive the world
in terms of various kinds of objects standing in relations to each other. Our pred-
icates correspond to these relations and we would want to say that our cognitive
apparatus is such that relations are reified in a way that they need to be in order
to become associated with types of utterances. For a verb like run we will say
that the predicate is one that holds between individuals and time intervals. We
will argue in section 4 that for other verbs we need frames instead of individuals.

We define a function lexVi which maps phonological types corresponding to
intransitive verbs like run and predicates with arity 〈Ind,TimeInt〉, such that if
W is a phonological type like “run” or “walk” and p is a predicate with arity
〈Ind,TimeInt〉, lexVi(W,p) is

Sign ∧.
s-event:

[
phon:W

]
synsem:

cat=vi:Cat

cnt=λr:
[
x:Ind

]
(
[
e-time:TimeInt
cW :〈λv:TimeInt(p(r.x,v), 〈e-time〉〉

]
)):Ppty




Similar remarks hold for this function as for the one we used for proper names.
For different local languages different predicates may be associated with utterances
of run and even within the same local language, confusing though it may be, we
may need to associate different predicates with different occurrences of run. In
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this way verbs are like proper names and one can think of verbs as proper names
of predicates.

However, this is not quite enough if we want to handle different forms of verbs
such as infinitives, and present and past tenses. For purposes of simplification as
our concern is not with the details of morphological types we will assume that
all finite verb occurrences are third person singular and will not represent these
features. In order to achieve this we need to define lexVi not in terms of a single
phonological type but a paradigm of phonological types corresponding to different
configurations of morphological features. For present purposes we will think of
there just being one morphological feature of tense which can take the values:
inf (“infinitive”), pres (“present tense”), past (“past tense”). We will think of
paradigms as functions which map records of type

[
tns:Tns

]
to phonological types.

Here the type Tns has elements inf, pres and past. Let run be the paradigm for
run. The function is defined by

run(
[
tns=inf

]
)= “run”

run(
[
tns=pres

]
)= “runs”

run(
[
tns=past

]
)= “ran”

and for walk we have

walk(
[
tns=inf

]
)= “walk”

walk(
[
tns=pres

]
)= “walks”

walk(
[
tns=past

]
)= “walked”

In order to obtain the interpretations of the tensed forms of the verb we will
need the following functions for present and past tense.

Pres which is to be λt:TimeInt(
[
e-time:TimeInt
tns:〈λv:TimeInt(v = t), 〈e-time〉〉

]
)

Past which is to be λt:TimeInt(
[
e-time:TimeInt
tns:〈λv:TimeInt(v.end< t.start),〈e-time〉〉

]
)

The present tense function expresses that the event time is identical with the
interval to which it is being compared. This is normally the speech time as in the
grammar defined here, though it could also be a different time interval, for example
in the interpretation of historic presents. The past tense function expresses that
the end of the event time interval has to be prior to the start of the interval (e.g.
the speech time) with which it is being compared.

We need also to make the distinction between finite and non-finite verb utter-
ances and we will do this by introducing a field labelled ‘fin’ which will take values
in the type Bool (“boolean”) whose members are 0 and 1.

Now we redefine lexVi to be a function which takes a paradigm W such as run
or walk, a predicate p with arity 〈Ind,TimeInt〉 and morphological record m of
type

[
tns:Tns

]
such that
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1. if m is
[
tns=inf

]
, lexVi(W, p,m) is

Sign ∧.
s-event:

[
phon:W(m)

]
synsem:


cat=vi:Cat
fin=0:Bool

cnt=λr:
[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv:TimeInt(p(r.x,v)), 〈e-time〉〉

]
):Ppty




2. if m is
[
tns=pres

]
, lexVi(W, p,m) is

Sign ∧.

s-event:
[
phon:W(m)
s-time:TimeInt

]

synsem:


cat=vi:Cat
fin=1:Bool
cnt=〈λv1:Time{λr:

[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv2:TimeInt(p(r.x,v2)), 〈e-time〉〉

]
∧. Pres(v1))},

〈s-event.s-time〉〉:Ppty




3. if m is

[
tns=past

]
, lexVi(W, p,m) is

Sign ∧.

s-event:
[
phon:W(m)
s-time:TimeInt

]

synsem:


cat=vi:Cat
fin=1:Bool
cnt=〈λv1:Time{λr:

[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv2:TimeInt(p(r.x,v2)), 〈e-time〉〉

]
∧. Past(v1))},

〈s-event.s-time〉〉:Ppty




An example of a set of intransitive verbs which could be generated with these

resources given appropriate predicates ‘run’ and ‘walk’ is⋃
α∈{inf,pres,past}{lexVi(run,run,

[
tns=α

]
),

lexVi(walk,walk,
[
tns=α

]
)}

Syntactic and semantic composition

We will think of composition rules as functions which take a string of utterances
of various types and return a type for the whole string. That is, the basic form of
our composition rules will be:

λs : T1(T2)

where T1 is a type of strings of signs and T2 is a type of signs. More specifically
we can say that unary rules are functions of the form
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λs : T1(T2), where T1, T2 vSign

and binary rules are of the form

λs : T_1 T2(T3), where T1, T2, T3 vSign

‘v’ here denotes the subtype relation defined in section *3.3. (We are suppressing
the subscript used there.) We can, of course, generalize these notions to n-ary
rules but unary and binary will be sufficient for our present purposes.

Note that to say that there is a string of signs s_1 s2 does not necessarily mean
that the signs are temporally ordered in the sense that s1.s-event.s-time.end <
s2.s-event.s-time.start. There could be an advantage in this for the treatment of
discontinuous constituents or free word order. But we can also define a special
“temporal concatenation” type for concatenation of signs:

A system of complex types TYPEC = 〈Type, BType, 〈PType,
Pred, ArgIndices, Arity〉, 〈A,F 〉〉 has temporal concatenation types
for the type Sign if

1. for any T1, T2 v Sign, T1
_tempT2 ∈ Type

2. s : T1
_tempT2 iff s = s_1 s2, s1 : T1, s2 : T2 and s1.s-event.s-

time.end < s2.s-event.s-time.start.

We will factor our rules into component functions which we will then combine
in order to make a complete rule. The components we will use here are:

unary sign which we define to be

λs:Sign(Sign)

This takes any sign and returns the type Sign

binary sign which we define to be

λs:Sign_tempSign(Sign)

This takes any temporal concatenation of two signs and returns the type
Sign

phon id which we define to be

λs:
[
s-event:

[
phon:Phon

]]
(
[
s-event:

[
phon=s.s-event.phon:Phon

]]
)

This takes any record s of type
[
s-event:

[
phon:Phon

]]
and returns a type

which is the same except that the phonology field is now required to be filled
by the value of that field in s.

phon concat which we define to be
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λs:
[
s-event:

[
phon:Phon

]]
_
[
s-event:

[
phon:Phon

]]
(
[
s-event:

[
phon=s[1].s-event.phon_s[2].s-event.phon:Phon

]]
)

This takes a string of two records with phonology fields and returns the type
of a single record with a phonology field whose value is required to be the
concatenation of the values of the phonology fields in the first and second
elements of the string.

unary cat which we define to be

λc1:Cat(λc2:Cat(λs:
[
cat=c1:Cat

]
(
[
cat=c2:Cat

]
)))

This takes two categories and returns a function which maps a record with
a category field with value the first category to a type of records with a
category field which is required to be filled by the second category.

binary cat which we define to be

λc1:Cat(λc2:Cat(λc3:Cat(λs:
[
cat=c1:Cat

]
_
[
cat=c2:Cat

]
(
[
cat=c3:Cat

]
)))

This takes three categories and returns a function which maps a string of two
records with a category field with values identical to the respective categories
to a type of records with a category field which is required to be filled by
the third category.

cnt id which we define to be

λs:
[
synsem:

[
cnt:Cnt

]]
(
[
synsem:

[
cnt=s.synsem.cnt:Cnt

]]
)

This takes any record s of type
[
synsem:

[
cnt:Cnt

]]
and returns a type which

is the same except that the content field is now required to be filled by the
value of that field in s.

cnt forw app which we define to be

λT1:Type(λT2:Type(λs:
[
synsem:

[
cnt:T1 → T2

]]
_
[
synsem:

[
cnt:T1

]]
(
[
synsem:

[
cnt=s[1].synsem.cnt(s[2].synsem.cnt):T2

]]
)

This takes any binary string of records s such that the content of the first
record is a function which takes arguments of a type to which the content
of the second record belongs and returns a type whose content field is now
required to be filled by the result of applying the content of the first record
to the content of the second record.

fin id which we define to be

λs:
[
fin:Bool

]
(
[
fin=s.fin:Bool

]
)
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This requires that the value of a ‘fin’-field will be copied into the new type
(corresponding to feature percolation in a non-branching tree in a more tra-
ditional feature-based grammar).

fin hd which we define to be

λs:Sign_
[
fin=1:Bool

]
(
[
fin=s.fin:Bool

]
)

This requires that the second sign in a string of two has a positive specifica-
tion for finiteness and copies it into the new type.

We will use the notion of merge defined in section *3.2 in the characterization
of how these component functions are to be combined in order to form rules. Since
the combination of these functions is so closely connected to the merge operation
we will use a related symbol ‘∧.. ’ with two dots rather than one. In the following
definition we will use Ti to represent types which are not string types and v to
represent an arbitrary variable.

1. λv:T1(T2) ∧.. λv:T3(T4) is to be λv:T1∧. T3(T2∧. T4)

2. λv:T_1 T2(T3) ∧.. λv:T_4 T5(T6) is to be λv:(T1∧. T4)_(T2∧. T5) (T3∧. T6)

3. λv:T_temp

1 T2(T3) ∧.. λv:T_4 T5(T6) is to be λv:(T1∧. T4)_temp (T2∧. T5) (T3∧. T6)

Since ∧.. , like ∧. , is associative we will write f∧.. g∧.. h instead of (f∧.. g)∧.. h or f∧.. (g∧.. h).
Now we can use the rule components we have defined to express the three rules

we need for this small fragment.

S → NP VP
binary sign ∧.. phon concat ∧.. binary cat(np)(vp)(s) ∧.. fin hd

∧.. cnt forw app(Ppty)(RecType)

NP → N
unary sign ∧.. phon id ∧.. unary cat(nProp)(np) ∧.. cnt id

VP → Vi

unary sign ∧.. phon id ∧.. unary cat(vi)(vp) ∧.. fin id ∧.. cnt id

This gives us a concise way to express rather complex functions corresponding
to simple rules. The point of this is, however, not merely to give us yet another
formalism for expressing natural language phrase structure and its interpretation
but to show how such rules can be broken down into abstract components which
an agent learning the language could combine in order to create rules which it
has not previously had available in its resources. Thus an agent (such as a child
in the one-word stage) which does not have a rule S → NP VP but who observes
strings of linguistic events where NP’s are followed by VP’s may reason its way to
a rule that combine NP-events followed by VP-events into a single event. While
this concerns linguistic events it is closely related to the way we take strings of
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non-linguistic events to form single events, for example, a going-to-bed-event for
a child might normally consist of a string of events having-hot-milk_putting-on-
pyjamas_getting-into-bed_listening-to-a-story. Our general ability to perceive
events, that is, assign types to events and to combine these types into larger event
types seems to be a large part of the basis for our linguistic ability. We will return
to this in our discussion of Fernando’s string theory of events in section 5.

4 USING FRAMES TO SOLVE A CLASSICAL PUZZLE ABOUT
TEMPERATURE AND PRICES

4.1 The Partee puzzle

Montague [1973] introduces a puzzle presented to him by Barbara Partee:

From the premises the temperature is ninety and the tempera-
ture rises, the conclusion ninety rises would appear to follow by nor-
mal principles of logic; yet there are occasions on which both premises
are true, but none on which the conclusion is.

Exactly similar remarks can be made substituting price for temperature. Mon-
tague’s [1973] solution to this puzzle was to analyze temperature, price and rise
not as predicates of individuals as one might expect but as predicates of individ-
ual concepts. For Montague individual concepts were modelled as functions from
possible worlds and times to individuals. To say that rise holds of an individual
concept does not entail that rise holds of the individual that the concepts finds at
a given world and time. Our strategy is closely related to Montague’s. However,
instead of using individual concepts we will use frames. By interpreting rises as a
predicate of frames of type AmbTemp as given in (2) we obtain a solution to this
puzzle.

(11)

λr:
[
x:Ind

]
(

 e-time : TimeInt
ctns : e-time= ι
crun : rise(r,e-time)

)

Note that a crucial difference between (10) and (11) is that the first argument to
the predicate ‘rise’ is the complete frame r rather than the value of the x-field
which is used for ‘run’. Thus it will not follow that the value of the x-field (i.e.
90 in Montague’s example) is rising. While there is a difference in the type of the
argument to the predicates (a record as opposed to an individual), the type of
the complete verb content is the same:

[
x:Ind

]
→RecType, that is, a function from

records of type
[
x:Ind

]
to record types.
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*4.2 Additions to the grammatical resources

The aim of this section is to add to the resources described in section *3.5 so that
we can analyze sentences such as the temperature rises and the price rises.

Lexicon

Intransitive verbs

The ability to use different types internally but still have the same overall type
for the content of the word means that we can incorporate verbs that take frame
arguments into the lexicon without having to change the rest of the grammar
resources. We add a paradigm rise:

rise(
[
tns=inf

]
)= “rise”

rise(
[
tns=pres

]
)= “rises”

rise(
[
tns=past

]
)= “rose”

We now introduce a lexical function lexVi−fr to be a function which takes a
paradigm W corresponding to a verb whose predicate takes a frame argument,
such as rise, a predicate p with arity 〈

[
x:Ind

]
,TimeInt〉 and morphological record

m of type
[
tns:Tns

]
such that

1. if m is
[
tns=inf

]
, lexVi-fr(W, p,m) is

Sign ∧.
s-event:

[
phon:W(m)

]
synsem:


cat=vi:Cat
fin=0:Bool

cnt=λr:
[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv:TimeInt(p(r,v)), 〈e-time〉〉

]
):Ppty




2. if m is
[
tns=pres

]
, lexVi-fr(W, p,m) is

Sign ∧.

s-event:
[
phon:W(m)
s-time:TimeInt

]

synsem:


cat=vi:Cat
fin=1:Bool
cnt=〈λv1:Time{λr:

[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv2:TimeInt(p(r,v2)), 〈e-time〉〉

]
∧. Pres(v1))},

〈s-event.s-time〉〉:Ppty




3. if m is

[
tns=past

]
, lexVi-fr(W, p,m) is
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Sign ∧.

s-event:
[
phon:W(m)
s-time:TimeInt

]

synsem:


cat=vi:Cat
fin=1:Bool
cnt=〈λv1:Time{λr:

[
x:Ind

]
(
[
e-time:TimeInt
cW(m):〈λv2:TimeInt(p(r,v2)), 〈e-time〉〉

]
∧. Past(v1))},

〈s-event.s-time〉〉:Ppty




An example of a set of lexical intransitive verb types which could now be gen-

erated with these resources given appropriate predicates ‘run’, ‘walk’ and ‘rise’
is ⋃

α∈{inf,pres,past}{lexVi(run,run,
[
tns=α

]
),

lexVi(walk,walk,
[
tns=α

]
),

lexVi-fr(rise,rise,
[
tns=α

]
)}

Common nouns

In our treatment of common nouns we will make the same distinction that we made
for intransitive verbs between predicates that take individual arguments and those
that take frame arguments.

We define a function lexN which maps phonological types corresponding to
common nouns like dog and predicates with arity 〈Ind,TimeInt〉, such that if W
is a phonological type like “dog” and p is a predicate with arity 〈Ind,TimeInt〉,
lexN(W,p) is

Sign ∧.
s-event:

[
phon:W

]
synsem:

cat=n:Cat

cnt=λr:
[
x:Ind

]
(
[
e-time:TimeInt
cW :〈λv:TimeInt(p(r.x,v), 〈e-time〉〉

]
)):Ppty




We define a function lexN-fr which maps phonological types corresponding to
common nouns like temperature and price and predicates with arity 〈

[
x:Ind

]
,TimeInt〉,

such that if W is a phonological type like “temperature” or “price” and p is a pred-
icate with arity 〈

[
x:Ind

]
,TimeInt〉, lexN-fr(W,p) is

Sign ∧.
s-event:

[
phon:W

]
synsem:

cat=n:Cat

cnt=λr:
[
x:Ind

]
(
[
e-time:TimeInt
cW :〈λv:TimeInt(p(r,v), 〈e-time〉〉

]
)):Ppty




An example of a set of lexical common noun types which could be generated
given appropriate predicates ‘dog’, ‘temperature’ and ‘price’ is
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{lexN(“dog”,dog),
lexN-fr(“temperature”,temperature),
lexN-fr(“price”,price)}

Determiners

We define a function lexDet-ex for the indefinite article which maps a phonological
type like a to a sign type such that if W is a phonological type lexDet-ex(W ) is

Sign ∧.

s-event:
[
phon:W

]

synsem:


cat=Det:Cat
cnt= λv1:Ppty

(λv2:Ppty

(

par:
[
x:Ind

]
restr:〈λv:

[
x:Ind

]
(v1(v)), 〈par〉〉

scope:〈λv:
[
x:Ind

]
(v2(v)), 〈par〉〉

)) :Ppty→Quant




We define a function lexDet-uni for the universal determiner every which maps a

phonological type such as “every” to a sign type such that if W is a phonological
type then lexDet-uni(W ) is

Sign ∧.

s-event:
[
phon:W

]

synsem:


cat=Det:Cat
cnt=λv1:Ppty

(λv2:Ppty

(

f:(r:
[
par:

[
x:Ind

]
restr:〈λv:

[
x:Ind

]
(v1(v)), 〈par〉〉

]
)

→ v2(r.par)

)):Ppty→Quant




We define a function lexDet-def which maps phonological types to a sign type

for the definite article the such that if W is an appropriate phonological type then
lexDet-def(W ) is

Sign ∧.

s-event:
[
phon:W

]

synsem:



cat=Det:Cat
cnt=λv1:Ppty

(λv2:Ppty

(



par:
[
x:Ind

]
restr:〈λv:

[
x:Ind

]
(v1(v)∧.f:(r:

par:
[
x:Ind

]
restr:〈λv:

[
x:Ind

]
(v1(v)),

〈par〉〉

)

→
[
scope:v=r.par

]
,

〈par〉〉)
scope:〈λv:

[
x:Ind

]
(v2(v)), 〈par〉〉


)):Ppty→Quant
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An example of a set of lexical determiner types that could be generated with
these resources is

{lexDet-ex(“a”),
lexDet-uni(“every”),
lexDet-def(“the”)}

This is a classical treatment of quantification which uses existential quantification
similar to that used in classical DRT [Kamp and Reyle, 1993] where existential
quantification introduces a discourse referent corresponding to our par(ameter)-
field. The indefinite article introduces three fields: the parameter field for the
witness of the quantifier, a restriction field corresponding to the common noun
following the determiner and a scope field representing the scope of the quantifier,
the verb phrase if the noun phrase built with the determiner is in subject position.
The result of applying the content of the determiner to two properties will be a
type which requires there to be an individual which meets the conditions provided
by both the restriction and the scope.

Also similar to classical DRT is the use of dependent functions (as defined on
p. 13) for universal quantification. The type resulting from the application of
the determiner content to two properties requires that there be a function from
individuals meeting the restriction type to a proof that these individuals also meet
the restriction. The use of dependent function types for universal quantification is
a classical strategy in the application of type theory to natural language semantics.
[Sundholm, 1986; Ranta, 1994, are examples of discussion of this].

The definite article content combines the content of both the existential and
the universal quantifier contents in the kind of Russellian treatment of definite
descriptions that Montague proposed. Applying this content to two properties
will return a type which requires that there is some individual which has the
first property and that anything which has this property is identical with this
individual (i.e. there is exactly one individual with this property) and furthermore
the individual also has the second property.

This treatment of quantification (like Montague’s) does not use generalized
quantifier relations even though the determiner contents are functions which apply
to two properties. [Cooper, 2010b, contains discussion of this issue].

Syntactic and semantic composition

We need one additional rule to combine determiners and nouns into noun phrases.
This rule is similar to the rule combining noun phrases and verb phrases into
sentences except that it uses different categories and content types and lacks the
finite head requirement.

NP → Det N
binary sign ∧.. phon concat ∧.. binary cat(det)(n)(np)

∧.. cnt forw app(Ppty)(Quant)
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5 LEXICAL SEMANTICS, FRAMES AND FERNANDO EVENT STRINGS

5.1 Frames that rise

In the previous section we proposed to solve the Partee puzzle by allowing pred-
icates such as ‘rise’ to take frames as arguments. But now the question arises:
what can it mean for a frame to rise?

In an important series of papers including [Fernando, 2004; Fernando, 2006;
Fernando, 2008; Fernando, 2009], Fernando introduces a finite state approach to
event analysis where events can be seen as strings of punctual observations corre-
sponding to the kind of sampling we are familiar with from audio technology and
digitization processing in speech recognition. When talking about the intuition
behind this analysis Fernando sometimes refers to strings of frames in a movie
(e.g. in [Fernando, 2008]). But in many cases what he is calling a movie frame
can also be seen as a frame in the sense of this paper as well. Thus an event of a
rise in temperature could be seen as a concatenation of two temperature frames,
that is, an object of type AmbTemp_AmbTemp. (12) shows a type of event for a
rise in temperature using the temperature frame AmbTemp in (2).

(12)

266666666666666664

e-time:TimeInt

start:

2664
x:Ind
e-time=e-time.start:Time
e-location:Loc
ctemp at in:temp at in(start.e-time, start.e-location, start.x)

3775
end:

2664
x:Ind
e-time=e-time.end:Time
e-location=start.e-location:Loc
ctemp at in:temp at in(end.e-time, end.e-location, end.x)

3775
event=start_end:AmbTemp_AmbTemp
cincr:start.x<end.x

377777777777777775
We will call this type TempRise. Now we can say something more precise about

the content of rise expressed in (11). Recall that this introduces a predicate ‘rise’
which takes a frame and a time interval as arguments. Combinining ‘rise’ with
two arguments creates a type of event in which the frame “rises” during the time
interval. We suggest that a candidate for such an event is an object of type
TempRise. We will express this by

if r:AmbTemp and i:TimeInt then e:rise(r,i) iff e:TempRise, e.start=r
and e.e-time=i.

This is at most a very partial account of what objects belong to the types which
are constructed from the predicate ‘rise’. It is limited to ambient temperature
frames. It does not tell us what it would mean for any other kind of frame to rise.
This incompleteness is, we believe, an important part of a cognitive theory based
on type theory.
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Our idea is to exploit an important aspect of the formal development of type
theory in a cognitive theory of concept acquisition. We want to say that concepts
are modelled by types in type theory. In the formal treatment of type theory when
we introduce a new type or a predicate which combines with arguments to form a
type there are always two things that have to be done. Firstly the type or predicate
itself has to be introduced and we have to say what the type is or how types can
be constructed using the predicate. Secondly we have to say what objects belong
to the type(s) we have introduced. In the cognitive theory we want to say that we
are often (perhaps standardly) in the situation where we have a type or predicate
in our cognitive resources (that is, we have performed the counterpart of the first
part of type introduction) but we have only a partial idea of what it means to be
of the type(s) introduced (that is, we have not been able to complete the second
part of the introduction). In fact, we will argue below that at least in the case
of concepts corresponding to word meaning we can never be sure that we have a
complete account of what it means to belong to the corresponding types.

Thus suppose that we have an agent who has just observed an utterance of the
sentence the temperature rises and that the utterance of the word rises was the
first time that the agent had heard this word. From various pieces of evidence the
agent may be able to figure out that this is an intransitive verb, for example from
the present tense morphology and its position in the sentence. This will provide the
agent with enough information to construct a predicate ‘rise’ given the linguistic
resources at the agent’s disposal and will enable the agent to conclude that the
content of the verb is (11), possibly with a question mark over whether the first
argument to the predicate is the whole frame or the x-component of the frame. It
is perhaps safer to assume first the more general case where the argument is the
whole frame unless there is evidence for the more specific case.

If the agent is at a loss for what was being communicated this might be as
far as she can get. That is, she will know that there is a predicate signified by
rise but she will not have any idea of what it means for a event to fall under a
type which is constructed with this predicate. However, there is very often other
evidence besides the speech event which will give clues as to what it might mean
for a temperature to rise. The agent, herself, may have noticed that it is getting
hotter. The speaker of the utterance may indicate by wiping their brow or fanning
their face as they speak that this is what is meant by rise. (Just think of the kind
of gesticulations that often accompany utterances made to non-native speakers of
a language with only basic competence.) Thus the agent may come to the account
we have presented of what rising involves for ambient temperature situations. A
question is: will this account generalize to other kinds of situations?

5.2 Word meaning in flux

For all (12) is based on a very much simplified version of FrameNet’s
Ambient temperature, it represents a quite detailed account of the lexical mean-
ing of rise in respect of ambient temperature — detailed enough, in fact, to make
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it inappropriate for rise with other kinds of subject arguments. Consider price.
The type of a price rising event could be represented by (13).

(13)

26666666666666666666666664

e-time:TimeInt

start:

26666664
x:Ind
e-time=e-time.start:Time
e-location:Loc
commodity:Ind
cprice of at in:price of at in(start.commodity,

start.e-time, start.e-location, start.x)

37777775

end:

26666664
x:Ind
e-time=e-time.end:Time
e-location=start.e-location:Loc
commodity=start.commodity:Ind
cprice of at in:price of at in(end.commodity,

end.e-time, end.e-location, end.x)

37777775
event=start_end:Price_Price
cincr:start.x<end.x

37777777777777777777777775
(13) is similar to (12) but crucially different. A price rising event is, not sur-

prisingly, a string of price frames rather than ambient temperature frames. The
type of price frames (Price) is given in (14).

(14)


x : Ind
e-time : Time
e-location : Loc
commodity : Ind
cprice of at in : price of at in(commodity, e-time, e-location, x)


If you look up the noun price in FrameNet7 you find that it belongs to the frame
Commerce scenario which includes frame elements for goods (corresponding to
our ‘commodity’) and money (corresponding to our ‘x’-field). If you compare the
FrameNet frames Ambient temperature and Commerce scenario, they may not
initially appear to have very much in common. However, extracting out just those
frame elements or roles that are relevant for the analysis of the lexical meaning
of rise shows a degree of correspondence. They are, nevertheless, not the same.
Apart from the obvious difference that the predicate in the constraint field that
relates the various roles involves temperature in the one and price in the other,
price crucially involves the role for commodity since this has to be held constant
across the start and end frames. We cannot claim that a price is rising if we check
the price of tomatoes in the start frame and the price of oranges in the end frame.

The fact that we need a different meaning for rise depending on whether the
subject is a temperature or a price corresponds to a situation which is familiar
to us from work on the Generative Lexicon [Pustejovsky, 1995; Pustejovsky, 2006]

7accessed 8th April, 2010
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where the arguments to words representing functions influence the precise meaning
of those words. For example, fast means something different in fast car and fast
road, although, of course, the two meanings are related. There are two important
questions that arise when we study this kind of data:

• is it possible to extract a single general meaning of words which covers all
the particular meanings of the word in context?

• is it possible to determine once and for all the set of particular contextually
determined meanings?

Our suspicion is that the answer to both these questions is “no”. How exactly
should we fill out our analysis in order to get the correct meaning of rise for
prices? Is it sufficient to check the price at just two points of time? If not, how do
we determine how many points need to be checked? Should we place restrictions
on the time-span between points which are checked and if so, how can we go about
determining the kind of time-span involved? Do we need to check that the rising
is monotonic, that is, that there is no point in the period we are checking that the
price is lower than it was at an earlier time in the period? And then there is the
matter of how space is involved in the meaning. If I say The price of tomatoes is
rising do I mean the price of tomatoes in a particular shop, a particular city, region
or in general wherever tomatoes are sold? This seems like a pragmatic dependence
on context. But suppose we have determined a region we are interested in. Does
the price of tomatoes have to be rising in every shop selling tomatoes in that
region or for every kind of tomato? If not, what percentage of the tomatoes in
the region need to be going up in price in order for the sentence to be true? This
is perhaps a matter having to do with vagueness or generic interpretations. Then
there are more technical questions like: is the price rising if it is keeping pace with
some recognized index of inflation? Well, it depends what you mean by rise. Can
the price of tomatoes be said to be rising if it stays the same during a period of
deflation?

It seems unlikely that we could tie down the answer to all of these questions
once and for all and characterize the meaning of rise. The techniques we have
for dealing with context dependence and vagueness may account for some of the
apparent variability, but in the end surely we have to bite the bullet and start
building theories that come to grips with the fact that we adjust the meanings of
words to fit the purposes at hand.

It seems that we are able to create new meanings for words based on old mean-
ings to suit the situation that we are currently trying to describe and that there
is no obvious requirement that all these meanings be consistent with each other,
making it difficult to extract a single general meaning. Here we are following
the kind of theory proposed by Larsson and Cooper [Larsson and Cooper, 2009;
Cooper and Larsson, 2009]. According to such a theory the traditional meaning
question “What is the meaning of expression E?” should be replaced by the fol-
lowing two questions relating to the way in which agents coordinate meaning as
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they interact with each other in dialogue or, more indirectly, through the writing
and reading of text:

the coordination question Given resources R, how can agent A construct a
meaning for a particular utterance U of expression E?

the resource update question What effect will this have on A’s resources R?

Let us look at a few examples of uses of the verb rise which suggest that this is
the kind of theory we should be looking at. Consider first that a fairly standard
interpretation of rise concerns a change in location. (15) is part of the description
of a video game.8

(15) As they get to deck, they see the Inquisitor, calling out to a Titan in
the seas. The giant Titan rises through the waves, shrieking
at the Inquisitor.

The type of the rising event described here could be something like (16).

(16)



e-time:TimeInt

start:


x:Ind
e-time=e-time.start:Time
e-location:Loc
cat:at(start.x,start.e-location,start.e-time)


end:


x=start.x:Ind
e-time=e-time.end:Time
e-location:Loc
cat:at(end.x,end.e-location,end.e-time)


event=start_end:Position_Position
cincr:height(start.e-location)<height(end.e-location)


This relies on a frame type Position given in (17).

(17)


x : Ind
e-time : Time
e-location : Loc
cat : at(x,e-location,e-time)


(17) is perhaps most closely related to FrameNet’s Locative relation. (16) is
structurally different from the examples we have seen previously. Here the content
of the ‘x’-field, the focus of the frame, which in the case of the verb rise will
correspond to the subject of the sentence, is held constant in the string of frames
in the event whereas in the case of rising temperatures and prices it was the focus
that changed value. Here it is the height of the location which increases whereas

8http://en.wikipedia.org/wiki/Risen_(video_game), accessed 4th February, 2010
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in the previous examples it was important to hold the location constant.9 This
makes it difficult to see how we could give a single type which is general enough to
include both varieties and still be specific enough to characterize “the meaning of
rise”. It appears more intuitive and informative to show how the variants relate
to each other in the way that we have done.

The second question we had concerned whether there is a fixed set of possible
meanings available to speakers of a language or whether speakers create appropri-
ate meanings on the fly based on their previous experience. Consider the examples
in (18).

(18) a. Mastercard rises

b. China rises

While speakers of English can get an idea of the content of the examples in (18)
when stripped from their context, they can only guess at what the exact content
might be. It feels like a pretty creative process. Seeing the examples in context
as in (19) reveals a lot.10

(19) a. Visa Up on Q1 Beat, Forecast; Mastercard Rises in Sympathy

By Tiernan Ray

Shares of Visa (V) and Mastercard (MA) are both climbing in
the aftermarket, reversing declines during the regular session,
after Visa this afternoon reported fiscal Q1 sales and profit ahead
of estimates and forecast 2010 sales growth ahead of estimates,
raising enthusiasm for its cousin, Mastercard.

b. The rise of China will undoubtedly be one of the great dramas of
the twenty-first century. China’s extraordinary economic growth
and active diplomacy are already transforming East Asia, and fu-
ture decades will see even greater increases in Chinese power and
influence. But exactly how this drama will play out is an open
question. Will China overthrow the existing order or become a
part of it? And what, if anything, can the United States do to
maintain its position as China rises?

It seems like the precise nature of the frames relevant for the interpretation of
rises in these examples is being extracted from the surrounding text by a tech-
nique related to automated techniques of relation extraction in natural language

9We have used ‘height(start/end.e-location)’ in (16) to represent the height of the location
since we have chosen to treat Loc, the type of spatial location, as a basic type. However, in a more
detailed treatment Loc should itself be treated as a frame type with fields for three coordinates
one of them being height, so we would be able to refer to the height of a location l as l.height.

10http://blogs.barrons.com/stockstowatchtoday/2010/02/03/

visa-up-on-q1-beat-forecast-mastercard-moves-in-sympathy/?mod=rss_BOLBlog, accessed
4th February, 2010; http://www.foreignaffairs.com/articles/63042/g-john-ikenberry/

the-rise-of-china-and-the-future-of-the-west, accessed 4th February, 2010.
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processing. We know from (19a) that Mastercard rises means that the share price
of Mastercard has been going up. We have, as far as I can see, no clear way of
determining whether this involves an adjustment to the meaning of rise or of Mas-
tercard. It seems that no harm would arise from both strategies being available to
an agent. (19b) is interesting in that the text preceding China rises prepares the
ground so that by the time we arrive at it we have no trouble figuring out that
what is meant here by rise has to do with economic growth, active diplomacy,
power and influence.

Consider (20) out of context.

(20) dog hairs rise

Unless you know this example from the British National Corpus it is unlikely
that you would get at the appropriate meaning for rise which becomes obvious
when we look at some of the context as in (21).

(21) Cherrilyn: Yeah I mean 〈pause〉 dog hairs rise any-
way so

Fiona: What do you mean, rise?
Cherrilyn: The hair 〈pause〉 it rises upstairs.

BNC file KBL, sentences 4201–4203

(21) is an example of a clarification request (as discussed recently in [Ginzburg,
forthcoming], and much previous literature cited there). Given that the meaning
of rise does not appear to be fixed, we might expect that a lot of such clarification
requests would occur. This, however, does not appear to be the case. Out of 205
occurrences of rise as a verb (in any of its inflectional forms11) in the dialogue
subcorpus of BNC there is one occurrence of a clarification, namely (21). It seems
then that there is no evidence that rise is particularly hard to understand, which
certainly seems to accord with intuition. It does seem, however, that human
speakers are particularly adept at adjusting meaning to suit the needs of the
current situation.

6 TOWARDS A THEORY OF SEMANTIC COORDINATION

It seems that we are constantly in the process of creating and modifying language
as we speak. This phenomenon has been studied and theorized about for at least
25 years by psychologists of language, for example [Clark and Wilkes-Gibbs, 1986;
Garrod and Anderson, 1987; Brennan and Clark, 1996; Healey, 1997; Pickering
and Garrod, 2004]. However, in semantics (both formal and empirical) there is a

11We used the tool SCoRE [Purver, 2001] using the regular expression
<V+>r(i|o)s(e((n|s))?|ing) to extract our examples, removing erroneously tagged ex-
amples by hand.
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tradition of abstracting away from this fact for rather obvious reasons. In formal
semantics there is an obvious advantage of assuming that natural languages have
a fixed semantics like formal languages in order to get started building a theory
of compositional semantics. In empirically based semantics like frame semantics
based on corpus data the point is to make statistically based generalizations over
whatever varieties of language might be contained within the corpus. However,
recently a number of linguists have become interested in trying to account for the
way in which language gets created or adjusted through dialogue interaction. For
some examples see [Cooper and Kempson, 2008].

One of the important facts to emerge from the psychological research is that
dialogue participants tend to coordinate (or align) their language. For example, if
you use a particular word for a particular concept, I will tend to use that word for
that concept unless there is good reason for me do otherwise (such as I believe that
your way of saying it is incorrect or I wish to mark that I speak a different dialect
from you). If I use a different word there will be a tendency for my interlocutor
to assume that I am referring to a different concept all else being equal. [Clark,
1993] refers to this as the principle of contrast. Similarly, if you use a word with
what is for me an innovative meaning, I need to find a way of constructing that
meaning so that either we can continue the dialogue using that meaning or we can
negotiate what the word should mean. That is, we need to engage in semantic
coordination [Larsson, 2007a; Larsson, 2007b]. Suppose you use the word rise
with a meaning that is new for me. How should I go about figuring out what that
meaning should be? One thing that seems clear is that I do not start from scratch,
considering the space of all possible intransitive verb meanings. Rather I start from
meanings I have previously associated with utterances of rise and try to modify
them to fit the current case. The structured approach to meaning presented by
TTR becomes very important here. Suppose that I have a meaning for rise of the
classical Montague semantics kind, that is, a function from possible worlds and
times to characteristic functions of sets of objects. The kinds of modifications that
are natural to such an object could, for example, involve adding or subtracting
objects which are associated with a particular world and time. Such modifications
are not particularly useful or intuitive in helping us to figure out the answers to the
kinds of questions about the meaning of rise. In contrast TTR provides us with
components that can be modified, parameters which can be used to characterize
variation in meaning and serve as a basis for a similarity metric. Components can
be modified in order to create new meanings from old.

Our idea is that this view of semantics should be embedded in the kind of view
of agents that coordinate linguistic resources which is presented in [Cooper and
Larsson, 2009]. We will review the ideas about agents presented there which are
in turn based on Larsson’s earlier work.

We conceive the theory as being within the gameboard approach to dia-
logue developed by Ginzburg [Ginzburg, 1994; Ginzburg, forthcoming, and much
other literature in between] and the computationally oriented approach based on
Ginzburg’s work which has come to be known as the information state update
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approach [Larsson and Traum, 2001, and much other literature developing from
these ideas]. Here dialogue participants have information states associated with
the dialogue which are updated by dialogue moves which they perceive as having
been carried out by their interlocutors or themselves. The kind of update which
this literature has normally been concerned with have to do with both informa-
tional content and metalinguistic information about what was said. Informational
content includes, for example, propositions which have been committed to in the
dialogue and questions under discussion. Metalinguistic information includes in-
formation about phonology and syntax as well as what content is to be associated
with various parts of the utterance. This provides us with a basis for dealing with
part of a theory of semantic coordination. In addition we need to be able to talk
about updates to linguistic resources available to the agent (grammar, lexicon,
semantic interpretation rules etc. in the sense discussed in [Cooper and Ranta,
2008]) which can take place during the course of a dialogue. The view presented
in [Cooper and Larsson, 2009] is that agents have generic resources which they
modify to construct local resources for sublanguages for use in specific situations.
Thus an agent A may associate a linguistic expression e with a particular concept
(or collection of concepts if e is ambiguous) [e]A in its generic resource. In this
paper, we will think of [e]A not as a collection of concepts but as one of the sign
types that we introduced above. In a particular domain α e may be associated
with a modified version of [e]A, [e]Aα [Larsson, 2007a].

The motor for generating new local resources in an agent lies in coordinating
resources with another agent in a particular communicative situation s. In a
communicative situation s, an agent A may be confronted with an innovative
utterance e, that is, an speech event which contains uses of linguistic expressions
not already present in A’s resources or linguistic expressions from A’s resources
which in s are associated with an interpretation distinct from that provided by
A’s resources. In the theory we have presented above either of these cases will
involve the construction of a new sign type which is specific to s, [e]As , and which
may be anchored to the specific objects under discussion in s (using the technique
of manifest fields).

Whereas in a standard view of formal grammar there will be one sign (or in our
terms sign type) corresponding to a particular interpretation of an expression, we
want to see e as related to a whole hierarchy of sign types: [e]As for communicative
situations s, [e]Aα for domains α (where we imagine that the domains are collected
into a complex hierarchy or more and less general domains) and ultimately a
general linguistic resource which is domain independent, [e]A. We think of the
acquisition of a particular sign type as a progression from [e]As for some particular
communicative situation s, through potentially a series of increasingly general
domains α yielding resources [e]Aα . In [Cooper and Larsson, 2009] we regarded
complete acquisition process as ultimately leading to a domain independent generic
resource, [e]A. However, the more one thinks in these terms the more likely it seems
that there is no ultimate domain independent resource at all (except perhaps
for “logical” words like determiners) but rather a large collection of resources
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associated with domains of varying generality.
There is no guarantee that any sign type will survive even beyond the particular

communicative situation in which A first encountered it. For example, the kind
of ad hoc coinages described in [Garrod and Anderson, 1987] using words like leg
to describe part of an oddly shaped maze in the maze game probably do not sur-
vive beyond the particular dialogue in which they occur. The factors involved in
determining how a particular sign-type progresses we see as inherently stochastic
with parameters including the degree to which A regards their interlocutor as an
expert, how many times the sign type has been exploited in other communicative
situations and with different interlocutors, the utility of the interpretation in dif-
ferent communicative situations, and positive or negative feedback obtained when
exploiting the sign type in a communicative situation. For example, a particular
agent may only allow a sign type to progress when it has been observed in at least
n different communicative situations at least m of which were with an interlocutor
considered to be an expert, and so on.

On this view the kind of question we need to be addressing in a formal linguistic
theory is not so much “What is the meaning of rises (with respect to price)?”
but rather “How will agent A with access to a resource [rises]Aα (for domain α)
exploit this resource in a given communicative situation s?”. Here we assume that
exploiting a resource standard involves modifying it so that it matches the purposes
at hand. The tradition that we have inherited from logical semantics has given
us the idea of truth conditions and determining whether a given sentence is true
under the fixed interpretation provided by the language. Here we are also allowing
for the option of modifying the interpretation of a sentence so that it would be
true in the current state of affairs. If A says φ to B in respect of situation s
and is being honest and is not mistaken about the nature of s, then A must be
interpreting φ in such a way that it correctly describes s and it is part of B’s
task to figure out what this interpretation might be. This is the task of semantic
coordination. The challenge for B is to figure out whether there is a reasonable
interpretation of φ (not too different from an interpretation that could be achieved
by the resources already at B’s disposal based on previous experience) or whether
A is in fact mistaken about the nature of s and is saying something false. It seems
that much of the misunderstanding that occurs in dialogue can be related to this
delicate balancing act that is required of dialogue participants.

We will try to be a little more concrete about what kind of modifications can be
made to resources. For the sake of argument we could say that [rises]Aα is the type
which is produced by the grammar we have defined above. The main opportunities
for modification here lie in determining what kind of Fernando event strings con-
stitute a rising. If we are talking about price the question is more specifically what
strings constitute a rising in price. Since according to this resource the relevant
strings are strings of price frames, modifications here may also have consequences
for the type of price frames provided by the resource. For example, an agent might
soon notice that location is an important parameter for prices (the price might be
rising in Europe but not in China, for example). This would mean that strings
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of price frames constituting a rising could now be required to contain the same
location. This is what we have represented in our type for price rising events.

Suppose that at a given location new higher quality tomatoes become available
on the market in addition to the tomatoes that were already available which are
still available at the same price. Has the price of tomatoes risen? In one sense, yes,
the average price of tomatoes has risen. In another sense, no, people who want
to buy the tomatoes they were buying before can continue to do so for the same
price. To get the first of these meanings we need to include information about
averages in a more detailed price frame. For the second of these meanings we
could introduce a parameter for quality into price frames and require that quality
be held constant in rising events. These are additions which we may well not want
to make part of any general language resource - they are rather ad hoc adjustments
for the situation at hand. Suppose now that the cheap tomatoes disappear from
the market but the more expensive tomatoes are still available for the same price.
Again, if what you mean by price is the average price then the price has risen.
But actually there are no tomatoes on the market such that they have gone up
in price. So you could argue (and people do) that prices have not gone up (using
price frames with the quality parameter). However, people who need tomatoes for
their pasta sauce and who used to buy the cheap tomatoes will now notice a rise
in price greater than the average price rise. Whereas they used to get tomatoes
for the cheap price they now have to pay the expensive price. For them, the price
of tomatoes has risen. Here we seem to need price frames which accommodate a
range of prices for a given commodity, for example a price record that specifies the
highest and lowest prices, and a characterization of rising in terms of the lowest
price. Again, this is an ad hoc modification which will be useful for some dialogues
but not for others. Once you have figured it out it might be useful to keep in your
collection of resources in case you need it again.

An important part of this discussion is that in order to figure out what is
meant in a particular speech event we need to match potential interpretations
against what we can observe about the world. We observe that A uses φ to
describe situation s and thereby draw conclusions about what A meant by this
particular utterance of φ as well as gaining information about s. Perhaps one of
the most straightforward examples of this connection is in language acquisition
situations where one agent indicates particular objects for another agent saying
things like This is a. . . . The challenge for an agent in this learning situation is
not so much to determine whether the utterance is true as trying to construct
an appropriate meaning for the utterance to make it true and storing this as a
resource for future use. Getting this coupling between language and perception
is, for example, one of the first challenges in getting a robot to learn language
through interaction (see for example the roadmap presented by the ITalk project,
http://www.italkproject.org/).
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7 CONCLUSION

One of the great advances in the study of language during the twentieth century
was the application of the theory of formal languages to natural language. Chal-
lenges for the study of language in the twenty-first century are to extend the formal
approach to the study of

1. interaction in dialogue

2. language coordination, including the creation or modification of linguistic
resources during the course of a dialogue

3. the relationship of these processes to other cognitive processes such as per-
ception

During the first decade of the century we have made some significant progress on
(1), for example, [Ginzburg, forthcoming]. We have also made a start on (2), for
example, [Larsson, 2007a; Larsson, 2007b; Cooper and Larsson, 2009]. TTR plays
a significant role in this literature. TTR might also be useful in addressing (3) in
that type theory is a theory about type judgements which from a cognitive point
of view has to do with how we perceive objects.

It is important that we do not lose what we gained during the twentieth century
when we are working with these new challenges and we beleive that by using
the tools provided by TTR it is plausible that we can keep and improve on the
twentieth century canon.

Type theory is appealing for application to the new challenges because it makes
the connection between perception and semantics and, with records, provides us
with the kind of structure (like frames) that we seem to need for semantic coor-
dination, giving us handles (in the forms of labelled fields) to items of knowledge
in a structure rather than the monolithic functions of classical model theoretic
semantics.
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